organization of the basics. In chapter 6, Maxwell's electrodynamics are treated formally with tensor notation introduced, emphasizing more fully the general Lorentz covariance of the theory. The book concludes with two chapters entitled "The Structure of Special Relativity" (meaning the Lorentz group and representations) and "Extensions Of Special Relativity" (to faster-than-light particles and gravitation). Chapters 2 through 7 have exercises to be worked, with answers provided, and there are a number of examples worked out in the text material itself.

Although the work is well-rounded and concise and has excellent potential for its intended purpose, I feel there is possibly one point of weakness in the presentation. That point is the low profile given to the qualitative results of Lorentz geometry through space-time diagrams, in all chapters except chapter 3. Most books over the decades that have dealt with relativity in a chapter or so display this neglect, so certainly Taylor's Special Relativity is not alone. But a student audience has a natural tendency to grasp results as displayed by formulas and substitute these for understanding, and (as every physicist knows) physics is neither exciting nor understandable in terms of formulas. For example, one's understanding of time dilation, contraction of lengths, the clock paradox and accelerated frames becomes much clearer with the modified intuition supplied by spacetime diagrams coupled with the predictive power of the Lorentz transformation. The algebra of the corresponding formulas could never provide the user with that kind of insight.

On the whole, the book is excellent and well-written. It should certainly be considered seriously by anyone desiring to teach or learn the fundamentals of a frequently misunderstood but exciting field.

GEORGE DEBNEY
Department of Mathematics
Virginia Polytechnic Institute
and State University
Blacksburg

Lunar Science: A Post-Apollo View

S. R. Taylor 372 pp. Pergamon, New York, 1975. \$16.50 hardcover, \$9.50 paperbound

Stuart Taylor, a Professorial Fellow at the Research School of Earth Sciences of the Australian National University, is a trace-element geochemist, with experience in meteorites, tektites and chemical diversification of geological material; he is a charter member in the

SCA/PRECISION SCIENTIFIC

Two new VacTorr® Direct Drive Vacuum Pumps

Efficiency: 60% or better at one micron

Powerful pumping mechanism in a lightweight, compact package—no belts, pulleys or other external moving parts. For example, Model DD-50 will deliver up to twice the capacity of similar size belt driven pumps. The DD-100, which weighs just 45 pounds, pumps 65 liters/min. at 1 micron Hg—outstanding efficiency for a pump of this capacity.

Concept of maximum capacity and compact design, plus quick pump-down and quiet operation make VacTorr two stage mechanical direct drives the versatile "go anywhere" vacuum pump. Ideal for use or storage anywhere in the laboratory—on benches, under counters, on shelving or in cabinets.

Ask your local GCA/Precision Scientific Dealer or write us. GCA/Precision Scientific, 3737 W. Cortland St., Chicago, IL 60647. Sales offices in principal cities.

Circle No. 40 on Reader Service Card

Better Teaching— By Design.

> PASCO Modular System

PASCO is in the same business you're in — helping people learn. You do it by using your knowledge of science and your skill with people. We do

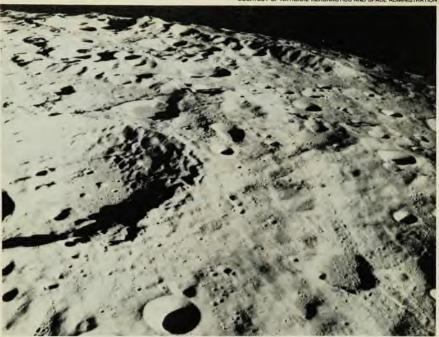
it by designing equipment that's more versatile, more accurate, more rugged — equipment to help you and help your students.

One example is our new line of modular components for physics and biomedical instrumentation. These modules lock together in any combination to form sturdy instruments with many applications. Use them one way today, another way tomorrow. Let your students design specific instruments for specific experiments, and they'll learn more from the experience.

The modular system is described fully in our new catalog. So are other systems designed to make the teaching of physics more interesting and more effective.

Fill out the coupon below to get your copy of our catalog, and we'll send along our series of biographies of prominent physicists, suitable for display in your classroom.

PASCO scientific


1933 Republic Avenue • San Leandro, CA 94577 • (415) 351-1501

Name.

Address_ City____

_State _

Zip

The lunar farside photographed from the Apollo 8 spacecraft. Despite long centuries of observation, much of the Moon remained unknown until space exploration began in the 1960's.

lunar-sample-analysis fraternity. His book is a review. With a large volume of material to cover, it is a review with a point of view, stressing interpretation, not data presentation. In language and style readily grasped by the nonspecialist and supplemented by an extensive glossary, ample footnotes and an index, he presents the post-Apollo understanding of lunar geology, both surface and interior.

From dim beginnings, perhaps glimpsed in the lunar-like markings on a reindeer bone carved over 300 centuries ago by a paleolithic hunter, to the megalithic astronomical observatories built around 40 centuries ago, to the first telescopic view 366 years ago, lunar science had evolved by the mid-twentieth century into an almost static, limited state characterized by detailed three-dimensional cartography and dating by stratigraphy and crater counts from Earth-based observations. Then over a period of eight years a quantum jump of unprecedented magnitude occurred. A program of intensive lunar study started in 1964 with photography from space platforms, which provided over 3,000 closeup images, followed by seven unmanned, solf-landed scientific instrument packages. The program was completed in 1972, after six manned missions had left arrays of scientific instruments on the Moon's surface and returned with nearly 400 kilograms of lunar samples. A measure of the results of this program is provided by the over 30 000 pages of scientific literature it generated. The implied rate of publications has scarcely changed, finding outlet in a Moon-dedicated

journal and in books such as this one.

Separate chapters of Taylor's book describe the structure, composition and history of the regolith (the lunar-wide surface blanket of impact ejecta, surprisingly heterogeneous on the local scale), the maria (regions of lava extruded from depths of between 100 to 300 km at various times 3.2 to 3.9 aeons ago and giving rise to the gravitational anomalies called "mascons"), and the highlands (the oldest exposed areas on the surface, fully saturated with craters from the early ½ to 1 billion year epoch of high meteor flux). These chapters emphasize the chemical interpretation of returned samples, and they feature striking scanning-electron-microscope views of glass beads and crystals, appropriately alien in appearance. Maria and highland chemical compositions differ in important details from petrologically similar earth rocks and from the standard of primitive solar system machondrites terial — carbonaceous which places hard constraints on theories of origin. The notion of a hereditary link between tektites and the Moon has been killed by revealed differences in composition. Moon rocks are deficient in volatile and siderophile (gold, silver and platinum group) elements and enriched in refractory ones. No evidence has been found for the presence of water or biogenic carbon compounds. Long exposure to the solar wind and to cosmic rays, it is evident, has left tracks and damaged grain surfaces.

The treatment of the surface exposure to the cosmic environment took the author away from his field and closer to mine with no loss of depth or accuracy apparent to me. This throughness also characterizes the chapter on the interior, in which Taylor describes the results of seismic and electromagnetic soundings, remnant magnetism, and heat flux measurements. The derived structure is simpler than Earth's-nearly constant density with a core confined to less than 8 percent of the volume (and possibly absent). Structure exists, as is revealed by changes in seismic waves passing through different depths, but nothing appears beyond likely changes in rock composition consistent with the geochemical and geophysical data.

The origin of the Moon is still a mystery, but the Apollo program greatly altered our perception of the problem. Of the three main hypotheses-double planet, fission and capture - none has survived the Apollo data flood in original form. Mutants and hybrids are now emerging, but, as Taylor notes in the final chapter, the new geological, chemical, physical, petrological and chronological constraints make a fierce climate for the new hypotheses' existence. In the spirit of Darwinian positivism, the future looks promising; when the struggle between hypotheses to match the facts is finished, only one should survive.

> GEORGE L. SISCOE University of California Los Angeles

new books

Elementary Particles and Fields

Physique Subatomique: Noyaux et Particules. L. Valentin. 606 pp. Hermann, Paris, 1975. 98 F

Nuclei, Nuclear Physics

Lecture Notes in Physics, Vol. 40: Effective Interactions and Operators in Nuclei (Proc. of Int. Topical Conf. on Nuclear Physics, Univ. of Arizona, Tucson, June 1975). B. R. Barrett, ed. 339 pp. Springer-Verlag, New York, 1975. \$12.90

Materials and Solid State

Electrons in Metals: An Introduction to Modern Topics. C. M. Hurd. 331 pp. Wiley, New York, 1975. \$19.50

Crystal Chemistry of Non-Metallic Materials, Vol. 2: Structure-Property Relations. R. E. Newnham. 234 pp. Springer-Verlag, New York, 1975. \$31.00

Radiation Damage Processes in Materials. C. H. S. Dupuy, ed. 534 pp. Noordhoff, Leyden, The Netherlands, 1975.

Anomalous Scattering (Proc. of Inter-Congress Conf. organized by Commission on Crystallographic Apparatus, Int. Union of Crystallography, Madrid, April 1974). S.