Proton Storage Ring.

We are seeking a B.S. - M.S. electrical/electronic engineer with extensive experience in high-power rf systems and high-voltage pulse techniques to be responsible for the design and construction of major electrical components for highcurrent proton storage ring, including fast pulsed magnet energizing circuits and rf bunching systems. A knowledge of closed-loop control systems useful. A background in accelerator applications of rf engineering is highly desirable.

The University of California's Los Alamos Scientific Laboratory offers excellent working conditions and fringe benefits, including 24 days annual vacation, ample sick leave, and progressive retirement plan. Located high in the mountains of Northern New Mexico, the living is uncrowded, casual; the environment is pollution free; the climate is superb cool summers and mild winters; recreational opportunities abound.

Please send complete resume or request application from:

R. Lynn Wilson, Recruiting Director Division - 76-WW Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, New Mexico 87545

AN AFFIRMATIVE ACTION **EQUAL OPPORTUNITY EMPLOYER** U.S. CITIZENSHIP REQUIRED

I found an uncharacteristic lapse from efficient pedagogy in the treatment of the quantum ideal gas, which Harris does first in the canonical ensemble, with the inevitable mathematical complications, and then efficiently in the grand canonical ensemble (but, unaccountably, in a way that will suggest to many students that the latter approach relies on the formalism of second quantization).

I suspect that many people nowadays prefer their relativity without $\sqrt{-1}$.

The basic postulate governing time evolution in quantum mechanics is presented in integral rather than differential form for time-dependent Hamiltonians, but the need for time-ordering the exponential is unaccountably overlooked.

Finally, a book as broad in scope and as useful to beginners as this one would benefit greatly from a more extensive

I am not sure how many people will feel that Harris's book (or books like it-and I am unaware that any has existed since Joos) is the way to teach physicists their subject. The almost universal current practice, what might be called guided wallowing in half a dozen or so chaotically massive compendia, though undoubtedly a less comfortable way to begin, is in fact much closer to the way in which practicing physicists continually extend their domains of expertise. On the other hand, for those who want to know the rudiments of everything physical-whether they are chemists, biophysicists, or just miserable physics graduate students faced with their orals in a month or two-I would be hard pressed to suggest as efficient a way as reading Harris.

> N. D. MERMIN Laboratory of Atomic and Solid-State Physics Cornell University Ithaca, New York

Adventures of a Mathematician

S. M. Ulam 317 pp. Scribner's, New York, 1976. \$14.95

Mathematicians are not like ordinary folk, and this autobiography provides an excellent example of the breed. The first chapter, "Childhood," brings Stanislaw Ulam to the age of 18, when he enters the university. His account consists of a series of remembered observations, musings, reflections and accounts of successes in schools, all of which presage the future mathematician. A scion of an uppercrust Polish-Jewish business family, Ulam lived in ease and luxury in the home environment, which appears to have effectively insulated him from the prevailing anti-Semitism and misery experienced by the poorer Polish and Jewish

ULAM

population. Ulam père was a successful lawyer, and the mother came from a well-to-do family dealing in steel. There is little account of parental influence, and the mother is not mentioned at all except in an opening paragraph which gives her maiden name and family. The biographer and historian will find very little in this account to fuel speculation on the environmental forces that shaped the interest and direction of this personality.

The second chapter, "Student Years." is of a very different quality. The six years at the university in Warsaw were exciting, stimulating and indeed inspiring. It was in the hey-day of the great Polish school of mathematics, and Ulam made the most of it. He describes how he floated on clouds of wonderful mathematics and mathematical lectures and congresses he attended and long sessions in cafés with other young, inspired students and teachers. It will bring tears of nostalgia and sentimental recollections to those who were fortunate enough to have gone to an exciting university in an exciting time in physics, which was my own good fortune.

In this account one finds, interspersed like a dirge, such names as Schraiar, Sternbach, Auerbach, Ruckziewicz, Stozek and Lomenicki, with the remark as each occurs, "murdered by the Germans"-nothing more.

Ulam lived a charmed life in Poland and later in the United States. Well mannered, easy going, witty-all doors appeared to be open to him. His friendship with John von Neumann, which this narrative in a profound sense is really about, inspired, colored and guided his life. With only brief intervals Ulam's lifeline proceeds from one success to another, both in career and professional achievement.

In Los Alamos, where I first knew Ulam, he was the man who was above the grubby battle, the aristocrat providing witty and slightly malicious comments on the struggles of the deeply engaged. From time to time, with a pithy remark and a clever piece of calculation presented in a somewhat indifferent manner, he could make-as in the matter of the hydrogen bomb-a contribution of very great significance. All along, one had the feeling that he was a visitor from another world, the world of pure mathematics. Other things-physics, politics, human affairs-although of some interest, were not enough to stir one deeply. This attitude is not a pose, it is the essence of this remarkable personality.

I have not attempted to assay the importance of Ulam's mathematical contributions as they are detailed in this book, because I am not at all equipped to do so. The reader, if he is a mathematician, will find a wealth of topics on which Ulam worked and suggestions and hints of further work. He will also meet briefly some of the great mathematicians of our time as they are refracted in the prism of Ulam's experience.

I. I. RABI Columbia University New York

Beam and Fiber Optics

J. A. Arnaud 447 pp. Academic, New York, 1976. \$34.00

The announcement in 1970 by F. P. Kapron, D. B. Keck and R. D. Maurer of the Corning Glass Works that they had produced a glass fiber that would transmit light efficiently over long distances made optical communications a practical possibility and led to an increased effort to understand the fine details of light propagation in fibers. (The announcement appeared as "Radiation Losses in Glass Optical Waveguides" in Appl. Phys. Lett. 17, 423, 1970.) In large part this book is an outgrowth of that effort, although a good deal of the material is concerned with guiding systems that predate the fiber.

The Corning people demonstrated that 1% of the light introduced at one end of a kilometer-long fiber could be recovered at the other end. At present, the fiber can be 10 km long with a 1% optical-power recovery, which is a plentiful percentage by communications-systems standards. In the pre-1970 days, the 99% figure for optical-power absorption and scattering loss occurred in fibers that barely reached across the room. While lossy fibers of that kind were not of much use for communications, they were fine for other applications. These applications included endoscopy (in which fiber bundles are used for viewing inside the body), image intensification (fiber bundles are emThere's more to cryogenic cooling than getting research samples to 2° K.

A cryogenic system should cool. But it should also be accurate, economical, versatile, compact, and easy to use.

Only HELI-TRAN® systems fit that description. Our LT-3-110 model, for example, cools samples from 300° K to 2° K. It's precise: provides temperature stability of ± 0.01° K in the automatically controlled model. It operates in any position, permits rotation of samples, offers fast experiment turnaround time. The

cost to operate is much less than other helium devices.

For versatility and performance, we supply specialized accessories for

more than 25 applications, including spectroscopy, UHV, resistance measurements, IR detectors, lasers, X-Ray diffraction, Mossbauer Effect, etc.

If you're interested in magnetic resonance applications, our LTD-3-110 model cools ESR and NMR samples from 300°K to 4.5°K.

And it cools in all commercial microwave cavities. It's available.

microwave cavities. It's available with a complete line of temperature controls and readouts, instruments and sensors.

For more information about cryogenic instruments, ask for a copy of our catalog, "Laboratory Cryogenic Systems." Call (215) 395-8491. Or write: Advanced Products Department, Air Products and Chemicals, Inc., Box 538,

CRYOGENIC SYSTEMS
Circle No. 37 on Reader Service Card