lost. With his death at age 88, the world of physics has lost both a pioneer of the early days of modern atomic structure and a most sympathetic colleague.

SAMUEL A. GOUDSMIT-University of Nevada Reno, Nevada

Thomas B. Dowd

Thomas B. Dowd, deputy chief scientist and physicist for the Boston Branch Office, Office of Naval Research, died on 1 October. He was 56 years old.

Dowd was probably best known in the US scientific community for his work as chairman of the National Infrared Information Symposium and editor-in-chief of its Proceedings. In the Boston Office, Dowd served as deputy chief scientist and as coordinator for industrial Independent Research and Development Programs.

Dowd joined ONR Boston in June 1947 as a staff physicist. In 1949 US Naval Research Company 1-1 was organized and Dowd became an energetic supported and spark plug of the unit. For years he served as program officer and remained as an advisor after he was

retired as a Captain in 1963.

It is in the infrared scientific and technological community that Dowd made his greatest impact. All three military services, both separately and cooperatively, pioneered research in infrared physics. Around 1955 ONR, under the stimulus and leadership of Arthur R. Laufer of the Pasadena Office, organized a communications mechanism of tri-service symposia called "IRIS" (Infrared Information Symposia) that soon became a vigorous medium of exchange in the military infrared field. Dowd's organization capabilities were recognized very early and he was made deputy chairman to Laufer. In 1960 Dowd was appointed to the chairmanship. Almost at once he became "Mr IRIS," organizing meetings in all parts of the country and handling all logistic details with matchless competence and meticulousness. He also began arranging comparable conferences in laser technology as well as specialty group meetings. Although many aspects of military infrared were necessarily classified, basic studies in physics, materials, detectors, information processing and the like were kept as open as possible, with publication in scientific journals encouraged.

A friendly, genial man with great dedication and an enormous capacity for hard work, Dowd will be sorely missed by his colleagues in ONR as well as by the scientific community at large.

ARNET L. POWELL
Office of Naval Research, Boston Branch
Boston, Massachusetts

ZAN

Filamentary Niobium-Tin Superconductor

The photograph shows a cross-section of the new **LAT** filamentary niobium-tin superconductor. It is available in production quantities in two types; 1615 filaments with a copper to superconductor ratio of 3.5, and 3721 filaments with a copper to superconductor ratio of 4. It can be supplied reacted or unreacted; in both states it is flexible and convenient to handle. This new material provides outstanding current densities and stability and represents the state of the art in superconductor technology.

ZAN

Filamentary Niobium-Titanium Superconductor

This material is available with the following number of filaments; 1, 60, 160, 600 and 1159. A variety of copper to superconductor ratios can be provided. It is probably the most widely used of all superconductors, and is available from stock in large quantities.

VAT is the trademark of Vacuumschmelze GMBH, 645 Hanau, Germany, the leading producer of high technology metals and alloys. In North America VAT superconductors are marketed by

CSCC

Canada Superconductor and Cryogenics Company Limited P.O. Box 280 St. Lambert, Quebec, Canada J4P 3N8 Telephone: 514-671-0751 Cable: NIOBIUMTIN MONTREAL

Booth #49, Physics Show

Circle No. 86 on Reader Service Card