I also believe that E. C. Crittenden is no. 57 and not no. 55.

ROBERT S. SHANKLAND Case Western Reserve University Cleveland, Ohio

Urinary drops again

I was interested in the description of "The Urinary Drop Spectrometer" in the September 1974 issue (page 23). It occurs to me that there may be an alternative to particle-size determination by light scattering. The falling of a drop into a pool of liquid normally results in the entrainment of air, which forms a small bubble. This bubble resonates and gives off the characteristic noise associated, for example, with a dripping faucet. It is quite likely that the characteristic frequency of the bubble depends upon the drop size. If this were the case, the drop-size spectrum could be determined from the acoustics spectrum. Instrumentation and use might turn out to be somewhat simpler and cheaper than that required for light scattering.

GEORGE E. DUVALL Washington State University Pullman, Washington

Artphysics anyone?

For some years now I have been interested in the way that some artists are using physical phenomena for creating works of art. Already lasers, holograms, gas discharges, magnetism and liquid crystals have been used. It seems to me that the artists are much better at invading science and exploiting our ideas than we are at exploring the artistic possibilities ourselves.

I wonder whether any readers who are currently being exploited or perhaps actually creating "artphysics" works (for want of a better word) themselves, would care to write to me and tell me about their experiences? I believe that the American educational system is much more conducive to this interaction than is our own. It would be interesting to make the comparison.

R. C. J. DRAPER University of Bath Bath, UK

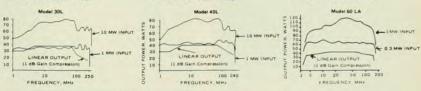
Omission corrected

Unhappily, through an error on my part the entry for the Alternating Gradient Synchrotron was omitted from figure 3 in the article entitled "Physics in 1975—new problems and insights" in the June issue (page 23). The first beam was obtained in 1960 and it has been in successful operation ever since.

WOLFGANG K. H. PANOFSKY Stanford University

A TRIPLE THREAT TO ENI

MODEL 30L


- 1-250 MHz
- 30 watts minimum with up to 80 watts usable power
- to 40 watts linear

MODEL 40L

- 1-240 MHz
- 40 watts minimum with up to 80 watts usable power
- to 40 watts linear

MODEL 60 LA

- 4-150 MHz
- 60 watts minimum with up to 120 watts usable power
- to 40 watts linear

TYPICAL POWER OUTPUT CHARACTERISTICS

All three amplifiers will operate into any load and feature adjustable output, low harmonic distortion and unconditional stability.


FOR COMPLETE DATA CALL 215-723-8181

Amplifier Research 160 School House Road Souderton, Pa. 18964

YOUR BEST SOURCE FOR RF POWER AMPLIFIERS
Circle No. 51 on Reader Service Card

Meet Joyce Loebl who has 4 degrees in microdensitometry.

When it comes to microdensitometers, Joyce Loebl is at the head of the class. Our complete line of instruments can handle virtually any requirement in the field of microdensitometry.

1. Good—Microdensitometer 3CS 2. Better—Scandig Digital Scanning Microdensitometer 3. Best—Microdensitometer 4 Image Analysis system 4. Unbelievable—Microdensitometer 5 superthing. For complete details and specifications, contact the microdensitometer experts through Mike Cassidy today!

Joyce Loebl Instruments 20 South Avenue, NW Industrial Park Burlington, MA 01803. Tel: (617) 272-2000

It's here . . . it's now . . . it's made by Joyce Loebl.

Circle No. 52 on Reader Service Card