

letters

curricula of different physics departments should occur.

Faculty attitude. The attitude of physics faculties toward careers in applied physics, engineering physics, and public-interest physics should change toward a greater acceptance of these careers. They should be accepted as equal to the traditional careers in the hierarchy of values of the physics community. A change in the reward structure of physics to reinforce the change in attitude should be considered.

Applied physics. Physics departments should establish ties with applied research laboratories in industry, government and other institutions. These ties may influence the selection of research areas at the university departments, may lead to greater awareness by the faculty of emerging technologies, and bring about a greater involvement by faculty and students in cross-disciplinary contacts.

Nontraditional fields. It should be made clear to each student early in graduate school that there is at least a 50% probability that he will have to build a permanent career in a nontraditional field of physics or in a field completely out of physics. The student should design his graduate program accordingly.

Teaching in non-PhD granting institutions. Although there is no total growth in the physics faculties of masters-granting or bachelors-granting institutions, there are some career opportunities in these institutions for physicists who know and can teach nontraditional fields such as oceanography or atmospheric physics. There are also teaching career opportunities in junior colleges and high schools. But a PhD will often be too expensive for the school district. Physicists heading for those careers might better stop at the bachelor, master or doctor of arts level.

Career mobility among older physicists. Career changes are highly desirable and could benefit everyone. For example, during his sabbatical a professor might be encouraged by his institution to work in an area outside his speciality. He might end up liking the new area, leave his old career, and make a job for a young physicist. Department policies might, through the offer of seed money or reduced course load, encourage faculty members to try nontraditional fields, thus producing openings for young physicists in a traditional field.

The entire conference was greatly indebted for much of its financial support to the Ford Motor Company Fund, Esso Research and Engineering Company, E. I. du Pont de Nemours and Company, and Corning Glass Works.

An account of the conference with short versions of many of the papers will be published in an issue of the

Newsletter of the Forum on Physics and Society [Vol. 4, No. 1 (1975)]. The abstracts of the conference appeared in the July 1974 issue of the *Bulletin of the American Physical Society*.

References

1. L. Grodzins, *Newsletter of Forum on Physics and Society* 4, No. 1 (1975). *Bull. Amer. Phys. Soc.* 16, 737 (1971).
2. S. Ellis, *AIP Publ. No. R-151.11*, May 1974.
3. B. F. Porter, S. F. Barisch, R. W. Sears, *PHYSICS TODAY*, April 1974, page 23.
4. A. M. Cartter, *Science* 172, 132 (1971). For a criticism of Cartter's and similar "pessimistic" projections (such as our own) see: T. R. Vaughan, G. Sjoberg, *Science* 177, 142 (1972).
5. D. A. Bromley, *PHYSICS TODAY*, July 1972, page 23.
6. S. Kasden *et al.*, Report on the Education of Physicists Symposium, Batelle Memorial Institute, Seattle, 1971 (unpublished).
7. G. Hardin, *Science* 162, 1243 (1968).

MARTIN L. PERL

Stanford University

R. H. GOOD, JR.

The Pennsylvania State University

Ode to charm

The world of nuclear power is full of sinister "charm."

They make the electrons glow at a three-billion-electron-volt arm.

This "charm" seems only forthcoming in the wake of an unheard of smack—A gentler approach is producing a mere bit of "strangeness"—alack.

Oh man, were you made of that matter!
Would you too exude charm on attack?
But, alas, you react to the latter
with nothing but counter-attack.

TRUDE WEISSKOPF
Palo Alto, California

Extending the interferometer

In his excellent article "Michelson and his interferometer," Robert S. Shankland retraced the history, indeed most fascinating, of Michelson and his work (April, page 37). This account, however, omitted almost entirely a recent extension of the interferometer, namely the Fourier Interferometer Polarimeter (FIP).

In recounting the narrow-slit experiment, Shankland stresses Michelson's "remarkable observational ability as he describes precisely the ... polarization ..." He also suggests that the optical phenomena observed in this experiment were precursors to the invention of the interferometer. It does not appear, however, (and Shankland never hinted even at the possibility) that Michelson ever thought of using his interferometer for measuring the polarization of light within spectral lines.

continued on page 80

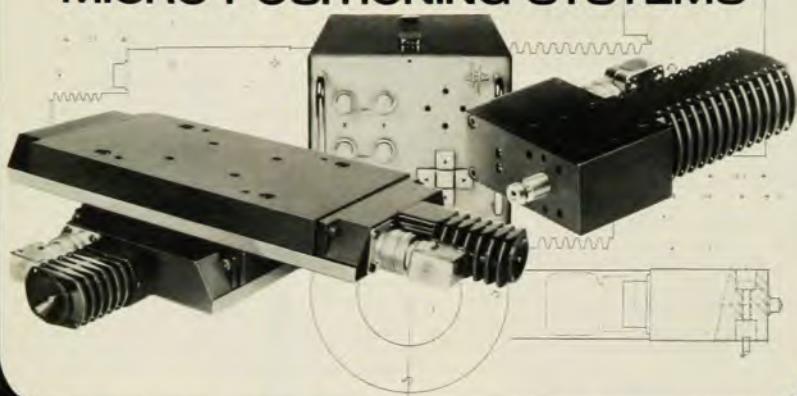
Some Galileo Channeltron® Charged Particle and Photon Detectors are out of this world...

...Others are right down to earth.

When it comes to Electron Multipliers, Galileo makes the best in the Galaxy. They're designed for such far-out applications as satellite experiments and rocket probes, or more terrestrial assignments like particle scattering experiments, UV detection, and commercial mass spectrometer detectors. Galileo Channeltron® Charged Particle and Photon Detectors feature:

- High gain: 10^8 electrons per pulse.
- Low noise: 0.5 counts per second
- Unaffected by repeated exposure to atmospheric conditions

For more facts and specifications, contact:


Galileo Electro-Optics Corp.

Galileo Park
Sturbridge, MA 01518
(617) 347-9191

Circle No. 15 on Reader Service Card

KLINGER "Precision at work"

REMOTE CONTROL, POWER DRIVEN MICRO-POSITIONING SYSTEMS

For highly precise, stepped positioning of Translation Stages . . . Jacks . . . Goniometric Cradles . . . Turntables.

These motor driven, fine quality positioning modules feature stepped accuracy of 2 microns and offer a wide latitude of optical system utilization. The power stage controls include stepped advance and reverse; fast forward and reverse. Operating capabilities include remote, mechanically pre-pro-

grammed and automated control. All modules are available in a variety of sizes — and are stackable for compound movements including X-Y motion. Contact our skilled specialists to help you plan your specific system. Klinger also offers a full complement of highly accurate, manually operated components.

Write for Bulletin #403 and price list.

KLINGER Scientific Apparatus Corp.

83-45 Parsons Blvd, Jamaica, N.Y. 11432 (212) 657-0335

Circle No. 60 on Reader Service Card

WITH OUR CATALOG
YOU MAY NOT NEED
A CUSTOM

CAPACITOR

AND THE CATALOG
IS YOURS
FOR THE ASKING

Picture a complete concise composite catalog of over 800 off-the-shelf capacitors, over 1200 variations including some weird and unusual units.

If what you need isn't there, then drop us a line, or give us a call, we'll custom design a capacitor for your circuit, and in most cases there is no charge for customizing. But check the catalog first, what you need may be there and ready for immediate shipment.

TO GET YOUR CATALOG,
JUST DROP US A LINE.

**condenser
products
corporation**

Box 997, Brooksville, Florida 33512
Phone (904) 796-3562

Circle No. 61 on Reader Service Card

letters

continued from page 15

About 30 years prior to that time, G. G. Stokes derived his parameters $|S_i| = |I, q, U, V|$, $i = 1$ to 4, which give respectively the light intensity, the degree of polarization, the orientation of the plane of polarization and the ellipticity of the polarization ellipse, for representing the state of arbitrary polarization of light, of which Rayleigh gave an account from a different point of view. In 1871 (approximately ten years before the invention of the interferometer) Rayleigh also investigated the illumination and polarization of the sunlit sky. He further pointed out in 1892 that the missing phase information in the visibility-curve technique could be recovered if, additionally, one measured the position of the fringes, thus opening the way to modern Fourier spectroscopy. And yet, despite his work on both polarization and interference spectroscopy, Rayleigh did not conceive the possibility of using an interferometer as a spectral polarimeter. That possibility had to wait until the mid-1960's and early 1970's for its conception, implementation and development.

In 1965-66, when I was at the University of California, Los Angeles, I was computing synthetic spectra of both light intensity and polarization formed in the atmosphere in the presence of scattering. Some of these results were published only several years later along with the detailed analytical theory for the study of the spectral multiple scattering of arbitrarily polarized light,¹ including the formation and behavior of absorption, emission and resonance-fluorescence spectra when observed in the diffuse light coming from either a localized region of a remote planetary disk (e.g. Venus) or from the entire disk. While these computations showed that polarization exhibits a marked variation across spectral lines and across the composite bands, it soon became evident that the conventional methods of measuring polarization (photopolarimeters) would give neither the necessary spectral resolution for this purpose (even if a high-resolution spectrometer were used as a filter) nor a significant signal-to-noise ratio (unless one were restricted to single spectral lines and to extremely bright sources). On the other hand, the Fourier spectroscopic technique was known to possess both multiplex and luminosity advantages—hence the concept of the FIP. In 1969, with the important collaboration of K. D. Abhyankar, then a visiting scientist from Osmania University, India, the concept was fully developed at the Jet Propulsion Laboratory and published the following year.² This novel application of the interferometer as a spectral polarimeter was also presented by

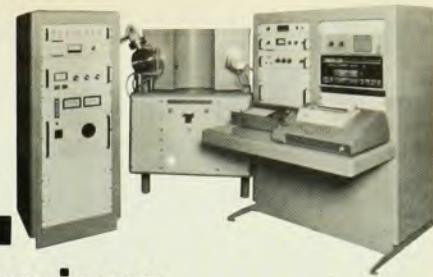
OPTICS FOR INDUSTRY

interference- filters and neutral density filters

contact ROLYN OPTICS

P.O. Box 148,
Arcadia, Calif.
91006

(213) 447-3200 (213) 447-4982


Circle No. 62 on Reader Service Card

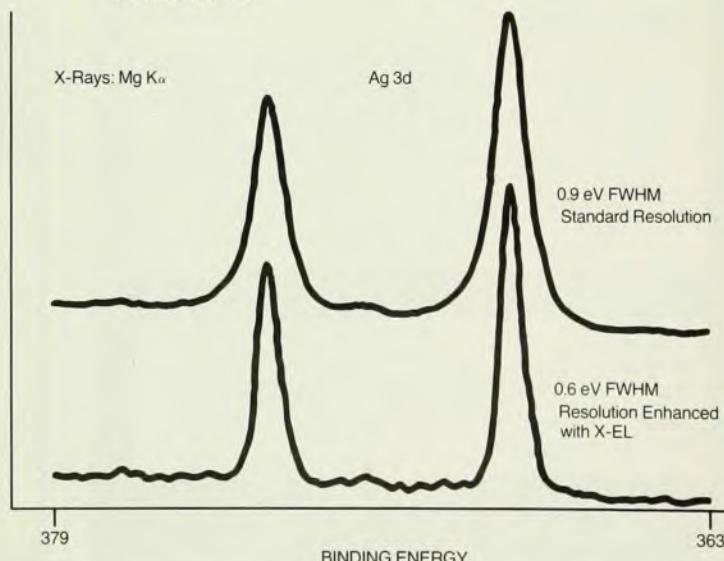
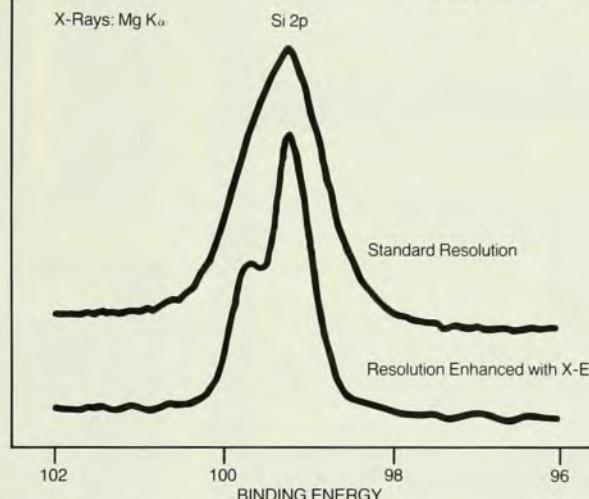
me at the 1970 International Conference on Fourier Spectroscopy² in Aspen, Colorado. While Shankland refers to the Proceedings of this Conference (his reference 9) as a witness to the "large activity in Fourier spectroscopy," it is regrettable that he overlooked the article describing the FIP, which is a new development in both interferometry and Fourier spectroscopy.

The concept was subsequently further refined, both theoretically and experimentally, and four alternative interferometric methods were proposed for recording spectral polarization³ (including spectral ellipsometry). All four methods can be applied to either one of the two beams emerging from the interferometer or to both. In one method (this is the original method developed with Abhyankar), two linear polarizers with transmission axis azimuths s_1 and s_2 are inserted, one in each arm of the interferometer, and one linear polarizer-analyzer with azimuth s_3 placed in front of the detector. Three interferograms denoted (s_1, s_2, s_3) , namely $(0^\circ, 0^\circ, 45^\circ)$, $(90^\circ, 90^\circ, 45^\circ)$ and $(0^\circ, 90^\circ, 45^\circ)$, were shown to provide the four spectra $S_1(\sigma)$, $\sigma = v^{-1}$, v = light frequency. On adding the first two interferograms, the spectrum usually provided by Michelson's interferometer results. In a second method, which is to be preferred to all other methods if one is interested in the complete set of Stokes parameters, only s_3 is used and the three interferograms now denoted (s_3) , namely (0°) , (45°) and (90°) can also yield $S_1(\sigma)$. The third method is similar to the former one except that s_3 is now placed in the incident beam. The last method is a hybrid of the latter two methods. However, the third and fourth methods, although requiring also three interferograms, cannot yield V . In some applications, only I and Q may be of interest. In this case, two interferograms obtained from any one of the four methods just described are sufficient. On the other hand, with a single interferogram, the first method can provide U and V .

Based on the second spectropolarimetric method described earlier, an instrument was subsequently built⁴ and recordings made of the Stokes polarization parameters of Venus in the wavelength range 0.8 to 2.7 microns with a resolution of 0.5 cm^{-1} . These observations were carried out using the 154-cm Cassegrain telescope of the National Mexican Observatory, Baja California, Mexico, on 12 and 13 July 1972. A preliminary limited analysis of four spectral features and of the CO_2 rotational band structures at 6080 and 6200 cm^{-1} has already demonstrated the existence of spectral polarization. These experimental results, confirmed by two series of observations, have provided experimental substantiation for this novel,

ESCA 36 X-EL

The Uncompromiser



Now you can get the ultimate in resolution without the disadvantages of a monochromator.

With the introduction of ESCA 36 X-EL, GCA/McPherson solves the resolution problem in ESCA once and for all. X-ray line width is eliminated by deconvolution.

You can analyze samples of any size, shape, or surface irregularity...even gases. The ESCA 36 X-EL system is

maintenance-free and introduces no sample charging or other problems. It retains full signal strength and is applicable to any ionization source.

Contact GCA/McPherson Instrument for highest available resolution, whatever shape your sample's in. 530 Main Street, Acton, Mass. 01720. Phone: 617-263-7733

GCA/MCPhERSON INSTRUMENT

The Spectroscopy People

Circle No. 63 on Reader Service Card

HIGH VOLTAGE POWER SUPPLIES RACK MOUNTED FOR CRT'S, MASS SPEC, ION & ELECTRON PHYSICS, SEM & LABORATORY

RHSR LINE

- State-of-the-art
- 10 PPM Line and Load regulation
- 10 PPM ripple
- Models through 60KV and 60 Watts
- Low temperature coefficient
- Remote programming, monitoring
- Reversible polarity

RHR LINE

- 100 PPM Regulation and Ripple
- Models through 400KV and 400 Watts
- Extreme versatility - wide variety of options - remote programming, monitor points, focus taps
- Fixed or reversible polarity
- Fully protected - "Arc-proof"
- Three year warranty

MODEL #RHR100PN100

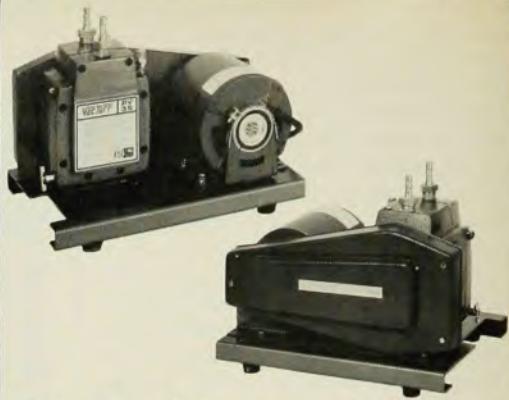
UHR LINE

- 1% Regulation
- 0.1% Ripple
- Models through 400KV and 400 Watts
- Fully Protected - "Arc-proof"
- Current Limit - Standard
- Low cost

MODEL # UHR5P10

ALSO:

Hundreds of modular and specialty rack supplies for commercial, industrial and military high voltage applications. Send for full line catalog.

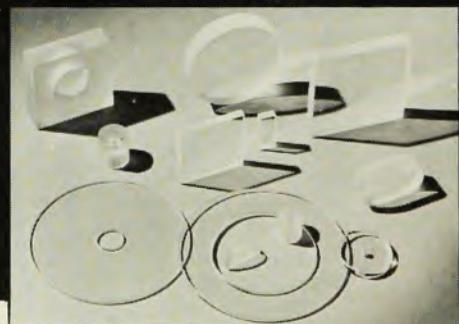

SPELLMAN

HIGH VOLTAGE ELECTRONICS CORPORATION.

1930 ADEE AVENUE, BRONX, NEW YORK 10469
(212) 671-0300 • TWX: 710-593-4135

Circle No. 64 on Reader Service Card

GCA/PRECISION SCIENTIFIC


**Vactorr® Vacuum Pumps
are Quick and Quiet.**

Noted for quick pump-down and quiet operation, Vactorr pumps now have factory-installed belt guards as standard equipment, completely enclosing all external moving parts of the pump and motor. Nine pump sizes, from 0.88 to 53 cfm, guaranteed ultimate vacuum as low as 0.1 micron of mercury (1×10^{-4} Torr). No oil back-up, standard gas ballast, lightweight, compact and easier to work with because interchangeable intake coupling accepts any type of vacuum line.

Ask your GCA/Precision Scientific Dealer or write us, GCA/Precision Scientific, 3737 W. Cortland St., Chicago, IL 60647. Sales offices in principal cities.

Circle No. 65 on Reader Service Card

WINDOWS · PLATES · DISCS OPTICS

FUSED QUARTZ, OPTICAL GLASSES, PYREX

Ultra-low expansion materials,
highly resistant to thermal shock.

High UV and IR transmission.

Chemically inert to most corrosive materials.

Stocking center for lenses, prisms and
laser accessories.

Complete fabricating facilities.

send for catalog of stock items

ESCO PRODUCTS

181 Oak Ridge Rd., Oak Ridge, N.J. 07438 (201) 697-3700

Circle No. 66 on Reader Service Card

letters

theoretically predicted phenomenon, thus establishing the capability of a suitably modified Michelson interferometer to measure polarization within spectral lines in addition to providing the usual spectrum.⁴

References

1. A. L. Fymat, in *Planets, Stars and Nebulae Studied with Photopolarimetry*, (T. Gehrels, ed.) University of Arizona Press, Tucson (1974); page 617.
2. A. L. Fymat, K. D. Abhyankar, *Applied Optics* 9, 1075 (1970); NASA Tech Brief 70-10405 (1970); US Patent No. 3 700 334; in *Proc. 1970 Intern. Conf. on Fourier Spectroscopy*, Aspen, Colorado, (G. A. Vanasse, A. T. Stair, D. J. Baker, eds.) AFCRL Report 71-0019 (Special Report 114), 377 (1971).
3. A. L. Fymat, *Applied Optics* 11, 2255 (1972).
4. F. F. Forbes, A. L. Fymat, in *Planets, Stars and Nebulae Studied With Photopolarimetry*, (T. Gehrels, ed.) University of Arizona Press, Tucson, (1974); page 637.

ALAIN L. FYMAT

California Institute of Technology
Pasadena

Which Cavendish?

Three years ago you published a letter (March 1972, page 57) I had sent to Samuel Devons on the Cavendish laboratory. In it I had quoted the current official Cambridge University publications that attributed the name of the laboratory to the donor Lord William Cavendish rather than to the famous scientist Henry Cavendish. My recent correspondence with Brian Pippard revealed, however, that this source was in error on at least two counts: (1) the laboratory was originally named for Henry, and (2) the official opening date was 16 June 1874 rather than 18 July 1874.

E. L. OFFENBACHER
Temple University
Philadelphia, Pennsylvania

Corrections

March, page 55: The price for *Phase Transitions and Critical Phenomena, Vol. 3: Series Expansions for Lattice Models*, edited by C. Domb and M. S. Green, should read £ 18.00, not \$18.00.

May, page 35: For "15-kA beam" on line 18, read "150-kA beam."

—page 36: The parameters of the Aurora facility given at the end of the first full paragraph of the second column should read "12 megavolt, 1.6 megamp and 160 nsec." □

Superintendent, Optical Sciences Division \$36,000 PER ANNUM

Directs and manages an extensive scientific program of R&D studies in optical sciences and technology, including infrared physics, high energy laser physics and technology, atmospheric optics, integrated optics, and optical systems. Formulates programs and interacts with major Navy, DOD, and industrial programs in electro-optics. Leads a staff of 150, primarily professional scientists, and performs all related administrative functions.

Requires outstanding capabilities in creative research, leadership, and management combined with established stature and reputation in the scientific community including credentials in an appropriate physical science or engineering field. Must show demonstrated ability to manage optical research programs of significant scope.

If interested, submit Personal Qualifications Statement, SF-171, or detailed resume, including personal references and information regarding experience, education, publications and professional activities to:

Ms. Nancy Farnham
Personnel Operations Branch
Code 1813—40-011
Naval Research Laboratory
Washington, D.C. 20375

All applications must be postmarked no later than 16 June 1975 to receive consideration.

An Equal Opportunity Employer

university of nijmegen, the netherlands

FACULTY OF SCIENCE

The Faculty of Science of the University of Nijmegen, the Netherlands, invites applications for the position of

lector in solid state chemistry

A lector position corresponds roughly with an associate professorship.

Applicants should be experimentors with proficiency in the solid state chemistry, at inorganic as well as organic materials.

Though some connection of the research area with those of existing research teams is desirable (research on Si and Ge single-crystals, ternary sulphides) applicants with other research interests will also be considered.

Applications, including a curriculum vitae, an account of professional experience and publications, and the names and addresses of two referees should be sent before July 1st, 1975 to Prof. Dr. E. de Boer, Faculty of Science, Toernooiveld, Nijmegen, the Netherlands, where further information concerning the post and the department may be obtained. Suggestions concerning suitable candidates are also welcome.