

letters

what appears to be the only planet in the solar system that possesses intelligent life. Wicher's observation has shown that the 280 million years during which it has produced such eclipses encompasses the fraction of the planet's estimated 5 billion years of history during which it has had life of sufficient intelligence to benefit from having such eclipses.

Stephen W. Behnen's counterargument (August, page 70) suffers from a more basic fallacy: the fact that Pluto, during part of its orbit, comes nearer to the Sun than Neptune implies that each planet will exactly eclipse the other only if the two orbits lie in the same plane. In actual fact, they are inclined by nearly 16 deg with respect to one another. Thus, exact total solar eclipses can occur only if the Mendillo-Hart relation, $E_r = 1$, is satisfied near enough to the intersection of the orbital planes. A calculation shows that this is not the case. Measured relative to a polar axis originating at the Sun and aligned with Pluto's perihelion, the points at which Pluto would exactly eclipse Neptune are given by $24^\circ 17'$ and $-24^\circ 13'$, while the points at which Neptune would exactly eclipse Pluto are given by $43^\circ 41'$ and $-43^\circ 37'$ (neglecting the effects of gravitational perturbations). At these points, the shadow of the eclipsing planet would miss the eclipsed planet by values ranging from 7.66×10^8 to 1.21×10^9 kilometers. As it turns out, however, even these encounters will be prohibited by a resonance between the motions of the two planets, as pointed out in a letter by William Jefferys that is being published concurrently.

Thus, there appears to be no justification, on the basis of the Mendillo-Hart proof, for sending missions to either Neptune or Pluto with the expectation of finding intelligent life.

ROBERT W. McADAMS
Fairfield, Connecticut

Stephen W. Behnen, in objecting to the "proof" of the existence of God offered by Michael Mendillo and Richard Hart, states that exactly total eclipses of the Sun by Neptune observed from Pluto, and vice versa, will occasionally occur because the orbit of Pluto passes within that of Neptune. Actually, because of a peculiarity in the orbits of Neptune and Pluto, this is not the case. C. J. Cohen and E. C. Hubbard¹ have found that Neptune and Pluto are locked into a resonance between their periods, and that as a result, the two planets cannot approach each other more closely than 18 Astronomical Units (1 AU = 1.5×10^8 km.). It is easy to show that as a result, the largest apparent diameter that

either planet can ever subtend when observed from the other is 4 seconds of arc; this occurs when Neptune is observed from Pluto at a distance of 18 AU. On the other hand, the smallest apparent diameter subtended by the Sun from either planet is 39 seconds of arc, attained from Pluto when it is at aphelion. Thus, at most an annular eclipse is possible.

Even this event may be forbidden, because the orbital planes of the two planets intersect at a large angle. Although I have not verified this, it is quite possible that the resonance would prevent the two planets from ever lining up along the line of nodes containing the Sun, a condition that is necessary for an eclipse to occur.

Reference

1. C. J. Cohen, E. C. Hubbard, *Astronomical Journal* 70, 10 (1965).

WILLIAM H. JEFFERYS
The University of Texas
Austin

More night-sky paradox

The article on Olbers's paradox by Edward Harrison in the February issue (page 30) brought to mind a note titled "Why is the Sky Dark at Night" by David Layzer in *Nature* 209, 1340-1341 (1966). Layzer, after detailed analysis, presented the following conclusions:

"The intensity of the background radiation field is limited by quite distinct physical effects in the three cosmologies considered here. In a static universe, it is limited (under present conditions) by the finite lifetime of the stars. In a steady-state universe the darkness of the night sky is a direct consequence of cosmic expansion. In an evolving universe, the situation is more complex. The stellar contribution to the background radiation field is limited in part by the finite lifetimes of stars and in part by the cosmic expansion. At radio wavelengths, free-free emission at an early stage in the cosmic expansion may be the most important contributor. The intensity of this radiation is limited partly by opacity and partly by the cosmic expansion. In addition, a vestigial radiation field ... may be present."

BRUCE W. SHORE
Livermore, California

The interesting article by Harrison on Olbers's paradox advances a novel resolution of that paradox using modern physical concepts. But the best part of Harrison's article is the heading of its last paragraphs, "Why Bother?" Thermodynamic equilibrium aside, Olbers's problem never had any merit to begin

continued on page 69

Elscint's new nuclear spectrometer...

versatility on a low budget

A complete Nuclear Spectrometer priced for the lowest budgets. Use it as a radiation detector with G-M tubes or as a scaler/timer. Optional plug-in Amplifier and Single Channel Analyzer cards for complete radiation spectroscopy as well as Mossbauer measurements.

An illustrated brochure on the Model INS-20 is yours for the asking.

elscint

Sales and Service World-Wide
In the U.S.A.
ELSCINT INC.
470 Commercial Avenue
Palisades Park, N.J. 07650
(201) 461-5406

Circle No. 17 on Reader Service Card

letters

continued from page 15

with because it is based on the false conclusion that an infinite universe must contain at least one star along every line of sight. To show that this is false one need only assume that the universe contains a countably infinite number of stars, that is one star for every natural number. Such a universe would be most definitely infinite, but there would be more lines of sight for every observer in every plane than there would be stars for him to see. This is because the number of directions an observer can look in the plane is equal to the number of points on the circumference of a circle, and, as is well known, there are more points on the circumference of a circle than there are natural numbers. Hence the idea that a dark night sky is paradoxical depends upon the assumption that the universe contains an *uncountably* infinite number of stars. For an arbitrary observer in 3-space it depends upon the assumption that the entire volume of the cosmos is a continuum of stars. Under the latter, a dark night sky is impossible, but so is the idea of a star as a discrete entity.

To avoid appearing hypocritical I should note I have shown elsewhere that the classical idea of uncountable infinity is both troubled,¹ and inconsistent with physics.^{1,2} However, under this newer view, which contradicts the idea that spacetime is dense, Olbers's paradox is meaningless because no infinity of stars need be assumed in order to wonder why the sky is black at night. (In this context Harrison's quantitative results might be very significant.) Sticking to the original context of the black-sky problem, as Harrison did, one finds that it lacks merit simply because it misconceives the well known properties of infinite cardinality as first described by Cantor.³

References

1. A. D. Allen, *Inter. J. Theor. Phys.* **9**, 3, 1974.
2. A. D. Allen "Physical bases for a new theory of motion," *Found. Phys.* (to be published).
3. G. Cantor, in *Contributions to the Founding of the Theory of Transfinite Numbers*, (P. B. Jourdain, ed.) Open Court, Chicago (1915).

ALLEN D. ALLEN
Algorithms, Incorporated
Northridge, California

accepted without question by most people even up to the present day. Students in introductory astronomy courses are still taught that the darkness of the night sky is direct evidence that our universe is not static; they are taught that Olbers missed the chance of a lifetime in not realizing that darkness means expansion. In my article I have shown that the original conclusion was false. In a static universe, constituted similar to our own at present, the night sky is also dark and the existence of darkness does not prove expansion.

I have discussed Bruce Shore's letter with David Layzer and I believe it is correct to say that both Layzer and I are in basic agreement. Shore may not have been aware that the paper he refers to was prompted in part by an earlier paper of my own. Also the passage quoted by Shore is not supplemented by Layzer's equations and therefore fails to convey the force of Layzer's arguments. A more complete statement is as follows: In a static model the condition for a low-intensity background radiation field is $t^* \ll \tau$, where t^* is the luminous lifetime of stars and τ is the thermodynamic time scale. (The finiteness of t^* is a necessary but not sufficient condition.) In a steady-state model the condition for a dark night sky is either $T \ll 4\tau$ when $T < 3t^*$, or $3t^* \ll 4\tau$ when $T > 3t^*$, where T is the expansion time. (Cosmic expansion ensures that the radiation field remains constant, but does not by itself guarantee that it is of low intensity.) In an evolving model the conditions for a dark night sky are similar: either $t \ll (1 + \alpha)\tau$ when $t < t^*$, or $t^* \ll (1 + \alpha)\tau$ when $t > t^*$, where t is the age of the model. To understand why the sky is dark at night it is necessary to think quantitatively in terms of three time scales. The general condition for a dark night sky in all models, whether static, evolving or steady-state, is roughly that the luminous lifetime or the expansion time, whichever is the smaller, is small compared with the thermodynamic time scale.

Allen Allen's remarks are interesting and of course correct if we regard stars as mathematical points. But stars have finite size and subtend a finite element of the solid angle of the sky. According to the bright-sky theory a static and spatially infinite universe is uniformly populated with luminous stars of n per unit volume. An observer's line of sight in any direction therefore intercepts a star at a finite characteristic distance

$$\lambda = (n\sigma)^{-1}$$

where $\sigma = \pi R^2$ is the area of a stellar disk and R is a typical stellar radius. Thus, the required number of luminous stars to cover the whole sky is

$$N = 4\pi n\lambda^3/3 = 4\pi/3n^2\sigma^3$$

THE AUTHOR REPLIES: I think it is important that we should try and understand the old static model and the paradox that has plagued it for so long. The original conclusion that the night sky is bright in a static model has been

LOS ALAMOS
SCIENTIFIC LABORATORY
PHYSICISTS
ASTROPHYSICISTS
NUCLEAR ENGINEERS
MECHANICAL ENGINEERS
COMPUTER SCIENTISTS
MATHEMATICIANS

The Theoretical Design Division of the Los Alamos Scientific Laboratory has openings for permanent staff members in the nuclear weapon design program and related areas. Areas of application include theoretical studies of weapon design, the calculation of nuclear weapons output, various neutron and gamma transport problems, and large scale computer code development and maintenance in support of the above work areas. Academic qualifications desired are MS-PhD in physics, astrophysics, or various engineering fields; BS or advanced degree in computer science or mathematics. Areas of specialization which provide particularly desirable backgrounds include:

Hydrodynamics (including numerical experience with **Eulerian**, **Lagrangian**, and mixed mesh schemes);

Transport theory for neutrons, gammas, and x-rays, including diffusion, S_n and Monte Carlo, linear and nonlinear;

Low energy neutron physics.

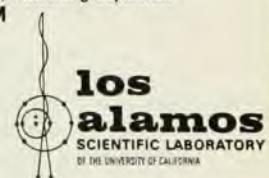
The University of California's Los Alamos Scientific Laboratory offers excellent working conditions and fringe benefits, including 24 days annual vacation, ample sick leave, and progressive retirement plan. Located high in the mountains of northern New Mexico, the living is uncrowded, casual; the environment is pollution free; the climate is superb—cool summers and mild winters; recreational opportunities abound.

Please send complete resume or request application from:

R. Lynn Wilson, Recruiting Supervisor
Division 75-MM

Los Alamos

Scientific


Laboratory

P.O. Box 1663

Los Alamos,

New Mexico

87544

UNITED STATES CITIZENSHIP REQUIRED

AN EQUAL OPPORTUNITY EMPLOYER

Energy, Ecology, and the Environment

RICHARD WILSON, *Harvard University*

WILLIAM JONES, *Massachusetts Institute of Technology*

"Our objectives are to present, as simply as possible, the status of the current energy problems and their related consequences, to provide a firm grip on the concept of energy and the conservation laws and their relation to physical phenomena, and to provide an appreciation of the physicist's way of looking at problems within and without the realm of science."—RICHARD WILSON and WILLIAM JONES

353 pages, \$5.95 paperbound

Energy in Perspective

JERRY B. MARION, *University of Maryland*

"How long will our fuel supplies hold out? What new possibilities are there for alternate sources of energy? What new technologies are developing that might alleviate our energy problems? In this book we attempt to place the 'energy crisis' in perspective. We discuss where our energy comes from, what we do with it, and the projections for the future."—JERRY B. MARION

208 pages, \$4.95 paperbound

Physical Science in the Modern World

JERRY B. MARION, *University of Maryland*

"Behind the complex facade of Nature we find a beautifully ordered design—a structure that is based on a surprisingly small number of far-reaching fundamental principles. *Physical Science in the Modern World* surveys the range of the physical sciences and their relationships as it demonstrates their day to day operation in our lives. My object in this book is to bring the student to an appreciation of the unity of science and its continuing influence upon his own life."—JERRY B. MARION

717 pages, \$12.95

STUDENT'S GUIDE for PHYSICAL SCIENCE IN THE MODERN WORLD

208 pages, \$2.95

For complimentary copies, write to the Textbook Department

Academic Press, Inc.

A Subsidiary of Harcourt Brace Jovanovich, Publishers

111 Fifth Avenue, New York, N. Y. 10003

24-28 Oval Road, London NW1 7DX

Circle No. 55 on Reader Service Card

letters

There are an infinite number of stars in a spatially infinite universe, but around each observer only the finite number N is needed to cover the entire sky. In Allen's mathematical model we have $\sigma = 0$ and $N = \infty$, and quite rightly in this particular case it is then questionable whether a bright sky is in principle possible. (For instance, if S is the radius of the universe and we keep the product SR constant as $S \rightarrow \infty$, it then follows that $\lambda/S \rightarrow \infty$, and a bright sky is impossible.) The value of N is estimated as follows: Let $\rho \approx 10^{-30} \text{ g cm}^{-3}$ be the average density of stellar material in the universe and let also $\rho^* \approx 1 \text{ g cm}^{-3}$ be the average density of matter within stars; we then obtain

$$N = \left(\frac{4}{3}\right)^3 \left(\frac{\rho^*}{\rho}\right)^2 = 10^{60}$$

and this is the number of stars required to create a bright sky. A spatially closed homogeneous and isotropic static universe contains a finite number N' , say, of stars that may be less than N . In this case light circumnavigates the universe $(N/N')^{1/3}$ times to create a bright sky.

One can criticize many of the original physical assumptions of the bright-sky theory, but I do not think the paradox it poses can be dismissed or resolved by mathematical arguments of the kind raised by Allen. Many have criticized the paradox on the grounds that it is basically meaningless, and it is therefore important to realize that it is quite easy to construct models in which the night sky is not dark. An Einstein static model of density $\rho > 10^{-17} \text{ g cm}^{-3}$, for example, has a thermodynamic time scale (in which light circumnavigates more than 10^6 times) that is less than the luminous lifetime of stars, and in such a model the night sky is bright. At the risk of cluttering up the argument with details, I should perhaps also mention that the Einstein model is dynamically unstable. The time scale of this instability is approximately the time it takes for light to circumnavigate only once. We therefore require an Einstein static model of density $\rho > 10^{-5} \text{ g cm}^{-3}$ in order that the thermodynamic time scale be less than the instability time scale. It is then quite easy to show that this particular bright-sky model contains only 10^4 stars of solar mass.

E. R. HARRISON

University of Massachusetts
Amherst, Massachusetts

Models of the sun

At the end of Barbara Levi's account of the solar-oblateness measurements by Henry Hill and his collaborators at the University of Arizona (September, page

17), there is mention of the possible relation of these measurements with the problem of solar neutrinos. It is remarked that the low neutrino flux is consistent with models of the Sun with a rotating core such as Robert Dicke's model.

In the context of solar neutrinos, it is misleading to lump all solar models with a rotating interior under a single heading. In fact, Dicke's model of the Sun, in which most of the mass rotates rigidly with a period of about one day, yields practically the same high neutrino flux as a nonrotating model.¹ Among models with a rotating interior, of which a variety have been discussed during the last few decades, it appears that only those including a *small* rotating core (of the order of one tenth of a solar mass) in a state of *rapid* rotation (in the sense that rotation affects appreciably the pressure gradient in the model, corresponding to a period of the order of one hour) can produce the desired reduction in neutrino flux.²

Whatever the merits and drawbacks of this class of models, which have been discussed in recent literature,³ they imply an internal structure and rotational history for the Sun sufficiently different from that proposed by Dicke to make them definitely distinct.

References

1. R. K. Ulrich, *Astrophys. J.* 158, 427 (1969).
2. P. Demarque, J. G. Mengel, A. V. Sweigart, *Astrophys. J.* 183, 997 (1973); *Nature Physical Science* 246, 33 (1973).
3. I. W. Roxburgh, *Nature* 248, 209 (1974); R. K. Ulrich, *Astrophys. J.* 188, 369 (1974).

PIERRE DEMARQUE
JOHN G. MENGE
ALLEN V. SWEIGART
Yale University
New Haven, Connecticut

Reactor safety study

"State and Society" in the November issue (page 87) reports on a \$3-million 14-volume reactor-safety study just released by the AEC. The overall conclusion is "the risks to the public from potential accidents in nuclear-power plants are very small." This is, if I remember correctly, the *n*-plus-one-th study by the AEC with the same conclusion in the past several years.

I call to your attention an article starting on page one of *The New York Times* of 10 November 1974. The title of the article is "AEC Files Show Effort to Conceal Safety Perils," and the article, written by David Burnham from an examination of letters and memos written by industry and commission officials in the past ten years, bears out the title.

NEW

DUAL THEORY

edited by M. JACOB, TH. Division, CERN, Geneva, Switzerland.

1975 400 pages.

Price: US \$24.50 / Dfl. 63.50.

The papers contained in this book review clearly and precisely the whole development of dual theory up to the present time.

Written by some of the leading contributors to the theory and updated since their appearance in *Physics Reports*, these papers provide a general introduction for the newcomer to the field as well as keeping the expert abreast of current research.

REACTIONS BETWEEN COMPLEX NUCLEI.

Proceedings of the International Conference on Reactions between Complex Nuclei, Vanderbilt University, Nashville, Tenn., June 10-14, 1974

edited by R. L. ROBINSON, F. K. McGOWAN, J. B. BALL, Oak Ridge National Laboratory, and H. HAMILTON, Vanderbilt University.

Volume 1 - contributed papers,
1974 211 pages.

Price: US \$16.95 / Dfl. 44.00.

Volume 2 - invited papers,
1975 680 pages.

Price: US \$50.00 / Dfl. 130.00.

Set price for both volumes:
US \$60.00 / Dfl. 156.00.

The proceedings of this international conference on reactions between complex nuclei are published in two volumes. The first contains contributed papers while this, the second, presents the invited talks.

Together these volumes survey the whole area of heavy-ion nuclear physics. Emphasis is placed on the nuclear physics of heavy-ion ($A > 4$) induced reactions, including elastic and inelastic scattering, compound nuclear reactions, fission, high-spin states, transfer reactions, Coulomb excitation and production of nuclei far from stability including heavy and super-heavy elements.

NORTH-HOLLAND PUBLISHING CO.

P.O. Box 211
AMSTERDAM, The Netherlands

Sole distributors for the U.S.A. and
Canada
American Elsevier Publ. Co.
52 Vanderbilt Avenue
NEW YORK, N.Y. 10017

Circle No. 56 on Reader Service Card