letters

However, even if the necessary broad technical competence could be assembled, the actual social decisions involve assessment of the social and other values associated with different choices of technologies. In the present case this would require evaluation of the public consequences and relative values attached to radiation vs. toxicants from fossil fuels.

As Devaney suggests, there is much to be done in evaluating risks from coal, and one suspects that these risks are considerable. The Panel would be interested in a proposal that focused on the physics issues involved in this guestion. Indeed, some members of the Society have suggested that a study of the physical role of submicron aerosols in pollution could be useful, not only in evaluating the present problem, but also in its technical and legislative amelioration. It has also been suggested that a study be made of the relationship between sources of pollutants and ambient air quality.

Suggestions or proposals for studies that might be sponsored by The American Physical Society would be welcomed by the Panel. Guidelines for APS-sponsored studies will be published in the September Bulletin.

PHILIP M. MORSE Chairman, Panel on Public Affairs The American Physical Society

Surface theory

The atomic structures of many molecules and solids are today well understood, but we are only beginning to explore the fundamental structure of surfaces. The articles in the April issue of surface physics did an excellent job of outlining the transformation that is taking place today in this subject. By describing the many new ideas and techniques that have appeared in the last few years, the authors have acquainted the general reader with many recent developments.

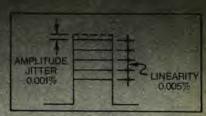
A key feature in analyzing atomic structure is the close interplay between theory and experiment, an interplay which in the past has proved essential to working out the basic interactions in atoms, molecules and solids. therefore a pity that, in their otherwise excellent article on theory, Robert Schrieffer and Paul Soven in their concluding paragraph (April, page 28) may have left their readers with the impression that all theorists have been working only on "highly simplified models," and that it is a task for the future to do theoretical work on "more realistic systems."

While theoretical work at the University of Pennsylvania has concentrated mainly on simplified models (such as sband cubium), there has been, as Schrieffer and Soven indeed note, theoretical work by J. A. Appelbaum and D. R. Hamann¹ on semiconductor surfaces that has identified new surface states (back-bonding states, as distinguished from Shockley's dangling-bond states). What they did not mention was that these new surface states have been observed experimentally on Si and Ge (III) surfaces by J. E. Rowe and H. Ibach.2 By examining differently reconstructed (III) surfaces, Rowe and Ibach were able to show that the backbonding surface states are a characteristic primary feature of the relaxed semiconductor surface, independent of the lateral reconstruction (which involves secondary interactions). Thus Appelbaum and Hamann's derivation for a relaxed but unreconstructed model of the surface is relevant to experiment. In my opinion, it is general distinctions of this kind, rather than extensive computer studies of highly simplified unrealistic models, that constitute the major contribution that theory will make in this field.

Let me add that valuable work on surfaces is carried out by chemists as well as by physicists, and that many of the most useful new ideas are of a chemical rather than a physical nature. (This conclusion is implicit in the excellent article on photoelectron spectroscopy by Dean Eastman and Marshall Nathan (page 44).) The theorist who wishes to make a significant contributions to the field of surface science does well to regard himself as a scientist who combines theoretical ideas from both physics and chemistry.

References

- J. A. Appelbaum and D. R. Hamann, Phys. Rev. Lett. 31, 106 (1973).
- 2. J. E. Rowe and H. Ibach, ibid., 102.


J. C. PHILLIPS Bell Laboratories Murray Hill, New Jersey

High-field superconductor

The news article, "Superconductor operates in magnetic fields above 500 kG" (January, page 17) reports a comment by Myron Stongin in which he points out that $H_{c2} = (2)^{1/2} \kappa H_c$ (bulk) where k is the Ginzburg-Landau parameter, Hc2 is the upper critical field and H_c (bulk) is the bulk critical field which increases with transition temperature, $T_{\rm c}$. He notes that "a very large κ usually indicates lower ultimate values of the flux pinning forces, which could imply a small useful current density." He thus argues that the k for the lead molybdenum sulfides with $T_c = 14.4 \text{ K}$ should be much larger than κ for Nb₃Sn with $T_{\rm c}$ = 18 K. Strongin's argument applies equally well to V3Ga as to the lead molybdenum sulfide materials. FOR HIGHEST STABILITY

PRECISION PULSE GENERATOR

Jitter and Linearity Characteristics

The Model PB-4 provides unprecedented stability and versatility in a precision pulse generator. You can get either flat top or tail pulses with ±5 ppm/°C stability. The amplitude is adjustable with an integral linearity of ±50 ppm and both rise and fall times are independently adjustable.

The Model PB-4 is ideal for high resolution spectroscopy and use with Berkeley Nucleonics' Model LG-1 Ramp Generator to produce a sliding pulse train.

The price is \$1595. For more information on this and other BNC pulse generators, phone (415) 527-1121 or write:

Berkeley Nucleonics Corp. 1198 Tenth St. Berkeley, Ca. 94710

PHYSICS TITLES FROM PLENUM

ATOMIC PHYSICS 4

Edited by G. zu Putlitz, W. Weber, and A. Winnacker

OPTICAL PROPERTIES OF IONS IN SOLIDS Edited by Baldassare DiBartolo and Dennis Pacheco

NEW USES OF ION ACCELERATORS Edited by James F. Ziegler

THEORIES AND EXPERIMENTS IN HIGH-ENERGY PHYSICS

Edited by Behram Kursunoglu, Arnold Perlmutter, and Susan M. Widmayer

PROGRESS IN LASERS AND LASER FUSION Edited by Behram Kursunoglu, Arnold Permutter, and Susan M. Widmayer

OPTICAL PROPERTIES OF HIGHLY TRANSPARENT SOLIDS

Edited by Shashanka S. Mitra and Bernard Bendow

PROGRESS IN ELECTRO-OPTICS—REVIEWS OF RECENT DEVELOPMENTS
Edited by Ezio Camatini

ELECTRONIC STRUCTURE OF POLYMERS AND MOLECULAR CRYSTALS

Edited by Jean-Marie André and Janos Ladik

ACOUSTICAL HOLOGRAPHY, VOL. 6
Edited by Newell Booth

OPTICAL INFORMATION PROCESSING By Yu. E. Nesterikhin, George W. Stroke, and Winston E. Kock

FUNDAMENTAL AND APPLIED ASPECTS OF NON-IONIZING RADIATION

Edited by Solomon M. Michaelson, Morton W. Miller, Richard Magin and Edwin L. Carstensen

PHYSICS OF THE HOT PLASMA IN THE MAGNETOSPHERE

Edited by Bengt Hultqvist and Lennart Stenflo

ENERGY STORAGE, COMPRESSION AND SWITCHING Edited by W. H. Bostick, V. Nardi, and O. F. S. Zucker

PHOTOELECTRON AND AUGER SPECTROSCOPY
By Thomas A. Carlson

QUANTUM STATISTICS AND THE MANY-BODY PROBLEM

Edited by Samuel B. Trickey, Wiley P. Kirk and James W. Dufty

MAGNETISM IN METALS AND METALLIC COMPOUNDS

Edited by Jan T. Łopuszański, Andrezej Pekalski, and Jerzy Przytawa

ENGINEERING APPLICATIONS OF LASERS AND HOLOGRAPHY
By Winston E. Kock

FLUCTUATIONS, INSTABILITIES AND PHASE TRANSITIONS

Edited by Tormod Riste

ATOMIC COLLISIONS IN SOLIDS VOLS. 1 & 2 Edited by Sheldon Datz

B. R. Appleton, and C. D. Moak

LASAR PLASMAS AND NUCLEAR ENERGY By Heinrich Hora

ULTRASOUND IN MEDICINE, VOL. 1 Edited by Denis White

ADVANCES IN X-RAY ANALYSIS, VOL. 18 Edited by W. L. Pickles, Charles S. Barrett, John B. Newkirk, and Clayton O. Ruud

LOW-DIMENSIONAL COOPERATIVE PHENOMENA Edited by H. J. Keller

HYDROGEN ENERGY, PARTS A & B Edited by T. Nejat Veziroglu

PRACTICAL SCANNING ELECTRON MICROSCOPY Edited by Joseph I. Goldstein and Harvey Yakowitz

HEAT TRANSFER AT LOW TEMPERATURES Edited by Walter Frost

PRINCIPLES AND PRACTICES OF X-RAY SPECTROMETRIC ANALYSIS (2nd Edition) By Eugene P. Bertin

THERMAL IMAGING SYSTEMS By J. M. Lloyd

POINT DEFECTS IN SOLIDS Edited by James H. Crawford, Jr. and Lawrence M. Slifkin

ION IMPLANTATIONS IN SEMICONDUCTORS
Edited by Susumu Namba

INTRODUCTION TO NUCLEAR RADIATION DETECTORS by P. J. Ouseph

DIGITAL ELECTRONICS AND
LABORATORY COMPUTER EXPERIMENTS
By Charles L. Wilkins, Sam P. Perone
Charles E. Klopfenstein, Robert C. Williams, and
Donald E. Jones

GRANTS: HOW TO FIND OUT ABOUT THEM AND WHAT TO DO NEXT By Virginia P. White

ADVANCES IN NUCLEAR PHYSICS, VOL. 8 Edited by Michel Baranger and Erich Vogt

PLENUM PUBLISHING CORPORATION, 227 West 17th Street, New York, N.Y. 10011 In United Kingdom: 8 Scrubs Lane, Harlesden, London NW10 6SE, England Prices subject to change without notice. Prices slightly higher outside the U.S.

The fact that V₃Ga does carry high current densities at high magnetic fields suggests that the future of the ternary molybdenum sulfides may be much brighter than Strongin's statement implies.

comparison of $H_{c2}(T)$ for The V2.95Ga and Pb1.0Mo5.1S6 in the figure shows the essential features. V_{2.95}Ga data appeared in 1962 in a paper¹ entitled "Evidence for a Critical Magnetic Field in Excess of 500 Kilogauss in the Superconducting V-Ga System," and the Pb1.0Mo5.1S6 results appeared recently.2 For both curves the solid lines correspond to measurements in dc magnetic fields, the dashed lines are the theory for a dirty type 2 superconductor with no paramagnetic limiting, and the experimental point (the arrow) at 4.2 K involves pulsed fields. (Data for V2.95Ga yield HC2 (4.2 K) $\approx 180 \text{ kG}$, i.e., 18 T.) T_c is 14.4 Kfor the Pb compound versus 14.5 K for $V_{2.95}$ Ga, and $(dH_{C2}/dT)_{T=T_c}$ is ≈ 60 kG/K for the Pb compounds and ≈50 kG/K for V2.95Ga. We thus expect x to be approximately the same for both materials. If V₃Ga were not strongly paramagnetically limited, the upper critical fields at low temperatures would be very similar for both materials. Because $(dH_{C2}/dT)_{T=T_c}$ and T_c are nearly the same for both materials we can expect similar useful current densities at high fields (based on Strongin's discussion). It should be noted that even though Tc for V3Ga is less than that for Nb₃Sn ($T_c \approx 18$ K), commercial grade V₃Ga now exists (a decade after reference 1 appeared). Above approximately 150 kG the useful current densities of V₃Ga are much higher than for Nb₃Sn,³ and magnets above 150 kG are being made with V₃Ga inner sections.

The question then is what limits Strongin's discussion? Possible explanations are: (1) that the ultimate current densities (determined by depairing) are not achieved in practical materials; (2) that current densities well below the ultimate are more than adequate for high-field applications of superconductors, and (3) at best, Strongin's argument that compares Nb₃Sn $(T_c \approx 18 \text{ K})$ with the lead compounds leads to a reduction of only 2 to 3 in current density of the lead compound, whereas metallurgical processes (working, adding impurities, etc.) are known to change useful current-carrying properties in superconductors by orders of magnitude. The more important parameters for attaining useful current densities in practical superconductors appear to involve materials processing effects rather than the theoretical limits imposed by κ and T_c .

Unless some unusual metallurgical problems develop we would assume that the ternary molybdenum sulfides will carry useful current densities at high fields. Several groups are now attempting to make wire materials and measurements of technical properties of these new materials, and their results should be available soon. Rather than be discouraged by theoretical estimates of ultimate current densities (which may not be relevant), I favor encouraging materials development and measurement.

References

- J. H. Wernick, F. J. Morin, F. S. L. Hsu, D. Dorsi, J. P. Maita, J. E. Kunzler, in High Magnetic Fields (H. Kolm, B. Lax, F. Bitter, R. Mills, eds) MIT Press and John Wiley, New York (1962); page 609.
- S. Foner, E. J. McNiff, Jr, E. J. Alexander, Phys. Letters 49A, 269 (1974) and Applied Superconductivity Conference 30 Sept.-2 Oct., 1974 Oakbrook, Illinois, in IEEE Trans. On Mag. Mag-11, 155 (1975).
- Y. Iwasa, IEEE Trans. on Mag. Mag-11, 266 (1975).

SIMON FONER

Francis Bitter National Magnet Laboratory Massachusetts Institute of Technology Cambridge, Massachusetts

THE AUTHOR COMMENTS: In my opinion there is no unusual physics per se in finding critical fields near 500 kOe or above, since many materials with high and high Tc's, or thin disordered films in parallel fields, can be expected to have such high fields in the presence of spin-orbit scattering. Of course, the main interest in these materials is whether they would be useful for high-field applications, and critical current and metallurgical stability are crucial factors that should be discussed, even in the present format. All other things being equal, higher Tc materials with high critical fields are on the average better choices for magnet materials than lower Tc materials with high critical fields. Foner is correct when he argues that at present metallurgical factors limit the critical currents of magnet materials, and some lower Tc materials with higher pinning forces can carry more current than higher Tc materials. This need not always be the case, and it is certainly one of the aims of materials research to understand and increase the critical currents of practical materials to levels approaching the fundamental limits.

I was not trying to discourage people by what can hardly be considered a theoretical estimate, but was mainly injecting a note of caution that critical field alone is not the whole story. I also favor materials development, and this constitutes a large fraction of our program at Brookhaven. Work on increasing the current carrying capacity of lead ternary sulfides has been underway

Introducing the damped rod

What is a damped rod?

Combine a rigid rod with an internal damping system that really works voila — the damped rod!

Why a damped rod?

The improvement of dynamic rigidity by one to two orders of magnitude quenches extraneous vibrations at the rod mounted component just as the larger damping systems in NRC honeycomb tables quench table motions, thereby permitting critical procedures in noisy environments.

How is it used?

Interchangeably with conventional NRC rods. It bolts directly to NRC tables, magnetic bases or gravity bases for use on granite surfaces.

Laser Mounts

Model 810 (\$135) shown here with SP-138 (\$240) laser offers pitch and yaw micrometer adjustment.

Mirror Mounts

Rugged precision 630 series mirror mounts for up to 6" optics.

Mounting Platforms

300 Series heavy duty platforms offers three machined surfaces for mounting NRC hardware.

newport research corporation

18235 Mt. Baldy Circle Fountain Valley, California 92708 Phone (714) 962-7701

Circle No. 12 on Reader Service Card

HIGH VOLTAGE POWER SUPPLIES RACK MOUNTED FOR CRT'S, MASS SPEC, ION & ELECTRON PHYSICS, SEM & LABORATORY

RHSR LINE

- · State-of-the-art
- 10 PPM Line and Load regulation
- 10 PPM ripple
- Models through 60KV and 60 Watts
- Low temperature coefficient
- Remote programming, monitoring
- Reversible polarity

MODEL # RHSR30PN60

RHR LINE

MODEL #RHR100PN100

- 100 PPM Regulation and Ripple
- Models through 400KV and 400 Watts
- Extreme versatility wide variety of options — remote programming, monitor points, focus taps
- Fixed or reversible polarity
 Fully protected "Arc-Proof"
- · Three year warranty

UHR LINE

- 1% Regulation
- 0.1% Ripple
- Models through 400KV and 400 Watts
- Fully Protected "Arcproof"
- Current Limit Standard
- Low cost

MODEL # UHR5P10

ALSO:

Hundreds of modular and specialty rack supplies for commercial, industrial and military high voltage applications . Send for full line catalog.

SPELLMAN

HIGH VOLTAGE ELECTRONICS CORPORATION

1930 ADEE AVENUE, BRONX, NEW YORK 10469 (212) 671-0300 • TWX: 710-593-4135

Circle No. 19 on Reader Service Card

CLEOS

May 25–27, 1976 San Diego, Ca.

The first Conference on Lasers and Electro-Optical Systems (CLEOS) will be held at the Town and Country Hotel in San Diego, May 25–27, 1976, under the joint sponsorship of the Quantum Electronics Council of the Institute of Electrical and Electronic Engineers (IEEE) and the Technical Council of the Optical Society of America (OSA).

CLEOS aims to provide a professional technical forum for the presentation of engineering and manufacturing developments in the fields of lasers, laser applications, electro-optic devices, electro-optic systems, and the manufacturing and design techniques that have made these systems possible.

Original papers are solicited that describe new technical contributions to such areas as:

- · laser engineering manufacturing
- measurement & alignment systems
- · opto-mechanical subsystems
- · scanning systems
- optical signal & data processing systems
- optical display systems
- · e-o component technology
- space & military e-o systems
- laser fusion & laser isotope separation systems
- · optical communication systems
- · medical e-o systems
- e-o systems for production of microelectronics
- · pollution-monitoring systems
- · consumer e-o systems
- imaging & surveillance subsystems
- ranging & designation subsystems
- · adaptive optical techniques

DEADLINE FOR SUBMISSION OF PAPERS IS JANUARY 23, 1976

An exhibit of instruments, components, materials and systems relating to the above subject areas will be a feature of the Conference.

For general information on the conference, circle #75 on the reader service card

For information on submitting papers, circle #76 on the reader service card.

Prospective exhibitors should circle #77 to receive exhibit brochure

American Institute of Physics 335 East 45th Street New York, N.Y. 10017 (212) 685-1940

letters

here for some time, which I hope will make Foner happy. Finally, while we shouldn't be discouraged by theoretical estimates, we insist that there is some value in thinking about them.

MYRON STRONGIN Brookhaven National Lab. Upton, N.Y.

Saturn absorption

It was a pleasure to be able to read Carl Sagan's discussion of "The past and future of American astronomy" (December 1974, page 23) after having heard his address to the American Astronomical Society during the special session devoted to its 75th anniversary. There is, however, a small point that bothers me.

In the section on spectroscopy, Sagan mentions "an absorption band at 6183 Å in the body of Saturn . . . now known to be at 6190 Å and is 6 ν_3 of methane." Recent planetary and laboratory spectra of CH₄ (H. Spinrad and L. M. Trafton, Icarus 2, 19, 1963; T. Owen, Science 167, 1675, 1970) show considerable structure, which makes it difficult to assign a band origin or center until a theoretical analysis is made. Furthermore, it appears unlikely that the attribution 6 ν_3 is definitive on the basis of what we presently know from high resolution infrared spectra of CH4. It seems that an early unproved quantum mechanical assignment has "hardened" over the years into a "scientific fact." The cautionary remarks of G. Herzberg (Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York, N.Y., pages 308-309) are particularly relevant here.

I hope that my comment amounts to more than just nit-picking. If the CH4 band at 6190 Å were to be studied by multiple-photon laser techniques, it might be essential to know whether the spectral features of interest belong to 6 v3 or some other overtone or combina-

tion band.

KENNETH FOX University of Tennessee Knoxville, Tennessee

Laser corrections

The news story published in the April issue (page 18), entitled "Excitation-Transfer Nitrogen Lasers," contains in its last section one error and several omissions. These deficiencies leave the reader with the false impression that the N2/SF6 pin discharge 2nd Positive laser was developed in Los Alamos and subcontracted to The Aerospace Corporation.

The 2nd Positive N2 bands at 3371 and 3576 A were first made to lase in resistively loaded pin discharges by

Steven Suchard, David Sutton and Luis Galvan at Aerospace.1 The indispensable ingredient to achieve threshold in these relatively slow rise time discharges is SF6. Ultra-violet laser pulses from this device exceed in duration the N2C state lifetime of 40 nsec. Independently, George Arnold and Robert Wenzel, of LASL, had observed energy enhancement of a factor of 10 and pulse lengths of 15 nsec with SF₆ addition to a fast rise-time device.² Similar effects have recently been reported by other groups operating fast-discharge lasers.3,4

Subsequent to the Aerospace discovery, kinetic and parametric studies based on preliminary findings were proposed to Los Alamos. Funding, however, was forthcoming through ERDA headquarters in Washington, D.C. Aerospace is not present "a subcontractor to Los Alamos on this project.' This unfortunate phrase and the lack of proper acknowledgments leave the impression cited earlier.

References

- 1. S. N. Suchard, L. Galvan, D. G. Sutton. Appl. Phys. Lett. 26, 521 (1975).
- 2. G. Arnold, R. Wenzel, unpublished data.
- 3. J. I. Levatter, S. C. Lin, Appl. Phys. Lett. 25, 703 (1974).
- 4. C. S. Willett, D. M. Litynski, Appl. Phys. Lett. 26, 118 (1975).

DAVID G. SUTTON The Aerospace Corporation Los Angeles, California

Trivial error/disastrous goof

Albert Claus (May, page 11) called for examples where trivial errors in calculations lead to disastrous goofs. Here is a true story my father enjoys telling on himself.

It all happened one Spring day at the Oak Ridge National Laboratory. And what better place to test a premise with scientific fact? Setting out for a nearby reactor site, Sam Hurst, then a brandnew physicist, was given directions on where to find the company car that was to provide his transportation. He was given a description of the car, its license plate number, and was told that the keys would be beneath the floor mat. Soon, our intrepid sojourner came upon the vehicle in question, and every bit of information was confirmed except that the final digit of the license plate number was off by one. "That's close enough for me," thought Hurst, "my wonderfully logical and scientific mind assures me that only one chance in ten thousand exists for this to be the wrong car." So away he drove, feeling certain that this black Ford was the one intended for his use.

Not long after his arrival at the destination, Sam was relentlessly accosted by the company guards. It seems that

continued on page 60

New 30 mm photomultipliers from EMI mechanically and electrically interchangeable with earlier EMI types such as 9524, 9592, 9529. 9824 has a bialkali cathode giving good Q.E. with very low dark current and high gain. 9798 has a UV window which combined with its S-20 cathode gives a wide spectral range (200-850 nm). Either type can be had with spectrosil window for extended UV or low back-

300-650 NM

ground applications.

200-850 NM

For Photon Counting, RFI/QL-30F slimline housings complete with potted divider chain are available for all 30 mm tubes. Available from stock. Details from:

80 EXPRESS ST., PLAINVIEW, NY 11803 TEL: 516-433-5900. TLX: 510-221-1889

Circle No. 13 on Reader Service Card