POWER MODULE

Model 2202

To regulate an AC-line connected load by means of a small DC signal from an automatic control instrument. It supplies large amounts of power for control of resistive heaters, thermo-electric elements, light sources, etc. in temperature controlled ovens, vacuum deposition equipment, infared heat sources, temperature baths and other applications. The instrument features a pulse-width-modulated zero crossing fires TRIAC circuit to minimize RF Interference, electronic protection against current overloads and voltage transient, and provides linear control to a AC power line up to 25 Amp. (110 V or 220 V).

INSTRUMENTATION

1314 Hanley Industrial Court, St. Louis, Mo. 63144)
(314) 968-4740

Circle No. 64 on Reader Service Card

LABORATORY Temperature Controller

Model 5301-E

With an input circuitry designed to accept resistance or voltage generating temperature sensors such as GaS-diodes, thermocouples, Ge & Pt Sensors, Carbon Resistors and Thermistors. The 5301-E, three mode controller offers temperature regulation to better than 0.01°K (or °C) in Vacuum chambers, Cryogenic dewars, Optical ovens, Tensile strength test apparatus, etc. for physics, metallurgy, chemistry and other scientific fields where the control and temperature range requirements are broad or change frequently. Set point readout is either directly in mV or Ohms (4-terminal measurement), with unlimited temperature range. Proportional, rate and reset modes are all internally adjustable, allowing to tune the controller to the thermal time constants of the process. 100 Watts, DC output or up to 5KW with Model 2202.

INSTRUMENTATION

1314 Hanley Industrial Court, St. Louis, Mo. 63144 (314) 968-4740

Circle No. 65 on Reader Service Card

we hear that

first lunar landing. The Gerard P. Kuiper Airborne Observatory is an \$11-million modified four-engine jet transport (C141) that carries a 36-inch infrared telescope.

David J. Rose is cited by American Nuclear Society

The American Nuclear Society has presented its 1975 Arthur Holly Compton Award to David J. Rose, professor of nuclear engineering at the Massachusetts Institute of Technology. The annual award recognizes outstanding contributions to nuclear science and/or engineering education.

Rose earned his doctorate in physics from MIT in 1950 and was on the Bell Laboratories technical staff from 1951 until 1958, when he joined the MIT faculty. In selecting him for the \$1000 Compton Award, the ANS praised Rose's teaching abilities and his work on energy policy and the handling of nuclear wastes.

At the University of Leiden, The Netherlands J. Mayo Greenberg will fill the new chair of laboratory astrophysics. Under his direction a group is being organized to serve as interdisciplinary link between the departments of physics and astronomy. Greenberg is now with the department of astronomy and space science of the State University of New York at Albany.

Ralston Russell Jr, professor of ceramic engineering at Ohio State University in Columbus, has become president of the American Ceramic Society.

David P. Ross has joined the Southern Interstate Nuclear Board in Atlanta, Georgia as director of energy and environmental problems. He was previously assistant professor of physics at Sam Houston State University.

Rocco Petrone, formerly associate administrator of NASA, has joined the National Center for Resource Recovery as president and chief executive officer. The center, a joint industry-labor effort, is concerned with recovering energy and materials from solid waste.

obituaries

Lawrence E. Kinsler

Lawrence E. Kinsler, professor of physics at the Naval Postgraduate School during 1946–70, died on 18 May at the age of 64.

Kinsler received his doctorate from the California Institute of Technology in 1934. It is a tribute to his scholarship that he received immediate postdoctoral employment at a time when even economists recognized the existence of a depression. He was appointed assistant professor of physics at Rollins College and became chairman of its science division in 1938.

During the years of World War II, he joined the Naval Reserve and was called to active duty to teach at the Naval Academy, where he became head of the physics division in 1945. In 1946 he joined the faculty of the Naval Postgraduate School at Annapolis and was promoted to the rank of professor in 1949.

Upon joining the Naval Postgraduate School, Kinsler perceived the importance of acoustics to the Navy and from that time specialized in this field. He collaborated with Austin Frey on the well-known textbook Fundamentals of Acoustics; written to present the principles of acoustics, it also treated effectively the applications of these princi-

KINSLER

ples to the fields of sonar and underwater acoustics. Although last revised in 1962, this text is still much used.

When the Naval Postgraduate School moved to Monterey he played a key role in the design of the physics-department building and in developing a strong acoustics program. His activity in curricular development led to his appointment as Dean of Curricula from 1962–66. Upon his retirement in 1970, the