we hear that

Goudsmit receives AIP Compton Medal

The American Institute of Physics has presented its Karl Taylor Compton Medal for Distinguished Statesmanship in Science to Samuel A. Goudsmit. The Institute cited him as "... widely known as the co-discoverer of electron spin, as the leader of the Alsos mission to Europe..., and as the founder and first editor of Physical Review Letters... He leaves Physical Review and Physical Review Letters as pre-eminent journals of our profession."

Goudsmit was Managing Editor and Editor-in-Chief of the American Physical Society during 1951–74. At Brookhaven National Laboratories he was senior scientist during 1948–70, chairman of the physics department, 1952–60 and

deputy chairman, 1960-67.

He earned his doctorate in 1927 from the University of Leiden, the Netherlands, and has been professor of physics at the University of Michigan, Harvard, the Massachusetts Institute of Technology and Northwestern University. From May 1944 until December 1945 Goudsmit was Chief of Scientific Intelligence (Alsos) Mission to Europe. His

GOUDSMIT

previous honors include the US Medal of Freedom, Research Corporation Science Award and the Max Planck Medal. ics and natural philosophy at Harvard University. The medal is awarded quadrennially to recognize achievements in theoretical physics. Past recipients have included Max Planck, Wolfgang Pauli, Arnold Sommerfeld and Peter Debye.

Van Vleck is best known for his contributions to the quantum theory of atomic structure and magnetism. He earned his doctorate from Harvard in 1922 and returned there in 1934 after teaching at the Universities of Minnesota and Wisconsin. During World War II he led the theory group of Harvard's radio research laboratory and acted as consultant to the radiation laboratory at the Massachusetts Institute of Technology. He was Harvard's Hollis Professor of Mathematics and Natural Philosophy from 1951 until his retirement in 1969. Van Vleck was president of the American Physical Society during 1952-53 and he has been vice president of the American Academy of Arts and Sciences and of the International Union of Pure and Applied Physics.

Harry D. Fair Jr, acting director of the US Army's energetic materials laboratory at Picatinny Arsenal, has been awarded the Secretary of the Army Research and Study Fellowship for 1974–75. He will travel to the Royal Institution of Great Britain and to the University of Paris to investigate fast physical and chemical processes in solids subjected to high static and dynamic pressures.

Rufus Cone, Robert Goble and Larry Kirkpatrick have joined the physics department of Montana State University as assistant professors.

Bruce H. Billings has been appointed vicepresident at the Washington, D.C. office of the Aerospace Corporation.

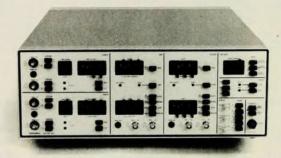
Bradford A. Smith has been named associate professor at the University of Arizona department of planetary sciences and lunar and planetary laboratory. He was formerly associate professor of astronomy and director of planetary research at New Mexico State University, Las Cruces.

Stephen Quon and David A. Cammack have joined the exploratory research group at Philips Laboratories, Briarcliff Manor, N.Y.

Franklin Institute honors four physicists

The Franklin Institute has presented awards to four physicists—Aage Niels Bohr and Ben Roy Mottelson of the Niels Bohr Institute in Copenhagen, Denmark, Robert A. Dicke of Princeton University and Peter Sorokin of the IBM Thomas J. Watson Research Center in Yorktown Heights, N.Y.

Bohr and Mottelson, research partners since 1952, received John Price Wetherill Medals for their work in developing the theory of collective states of atomic nuclei. Bohr (the son of Niels Bohr) earned his doctorate at the University of Copenhagen and has spent his career at the Niels Bohr Institute, holding its directorship during 1963–70. Mottelson received his PhD from Harvard University and has been at the Bohr Institute ever since.


The Elliott Cresson Gold Medal went to Dicke in honor of his theoretical and practical contributions to modern physics, particularly gravitational theory. He received his doctorate from the University of Rochester in 1941. He worked on radio and radar at the Massachusetts Institute of Technology, and at Princeton, on development of the gas-cell atomic clock and infrared and optical lasers. With Carl Brans, Dicke developed a gravitational theory that has yielded more precise radar distances to other planets. He is currently Brackett Professor of Physics at Harvard University.

Sorokin was awarded the Albert A. Michelson Medal in recognition of his contributions to quantum optics, especially the invention of the organic dye laser. He received his doctorate in 1958 from Harvard University and holds eleven patents in microwave and optical physics.

Van Vleck awarded 1974 Lorentz Medal

The Royal Netherlands Academy of Arts and Sciences has presented the 1974 Lorentz Medal to John H. Van Vleck, emeritus professor of mathemat-

Three things you can do with a really fast Biomation waveform recorder.

Model 8100. Real-time 8-bit A/D conversion and storage, to 100MHz. High speed signal acquisition with 2000 point buffer storage. 100mV full scale sensitivity. Arm and trigger circuits with settable delays. Includes unique pretrigger recording and dual sample rate recording. Analog or binary output.

1 Capture one-shot analog signals to 25MHz.

- records selected portion of signal prior to trigger
- permanent signal storage
 Our very high speed analog-to-digital converter captures fast one-occurrence waveforms at a maximum word conversion rate of 100MHz. The unit's 8-bit x 2000 word MOS shift register memory permanently stores a digital equivalent of your signal and can output it in either digital or analog form to your scope, pen recorder, or digital computer system.

2

Average fast repetitive signals with sweep times to 20 μ sec.

- 2000 point time resolution
- interfaces easily with most signal averagers

Paired with a Biomation 8100, your hardwire or computerized signal averager is capable of averaging signals with bandwidths of up to 25MHz. This fantastic performance, almost 100 orders of magnitude faster than any averager available, is accomplished by using the 8100 as a time expansion device. You can capture your fast signal, then output it slowly, at a rate set by your averager or computer. Sound interesting? Ask for our Application Note describing the 8100 and other Biomation waveform recorders in signal averaging set-ups.

Get systemprogrammable fast signal acquisition.

- 25 MHz bandwidth
- 2000 word buffer memory
 The 8100 has 100mV full scale
 sensitivity. All front-panel control
 functions except display and on/off
 controls can be remotely controlled
 through the 16-bit digital interface.
 A bit-parallel, word-serial data
 exchange provides control over all
 digital functions and data output at
 the command of an I/O clocking
 bit in a "hand-shake" data transfer.
 This asynchronous method ensures
 rapid and positive data communications. With an 8100 in the loop,
 your computer can manage all I/O
 operations of your work without the
 need for separate interface
 hardware.

For complete data on the 8100, please circle the reader card number or write us at 10411 Bubb Road, Cupertino, CA 95014. (408) 255-9500.

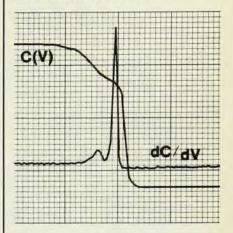
Booth 414-415 Physics Show

106

we hear that

Bogdan C. Maglich, formerly professor of physics at Rutgers University, has become chairman of the newly-formed Fusion Energy Institute. He will lead the R&D program on controlled fusion in self-colliding beams.

Douglas Duke has become chairman of the physics department at the University of Miami. Michael Ram has been appointed chairman of the department of physics and astronomy at the State University of New York at Buffalo.


Chia-Wei Woo has become chairman of Northwestern University's physics department; George K. Wong, formerly of the University of California, Berkeley, has been appointed assistant professor.

The new chairman of Brown University's physics department is Philip J. Stiles.

CONDUCTANCE MEASUREMENTS IN SEMICONDUCTORS

CAPACITANCE/

C-V Testing Systems for Determination of:

- Flat Band Voltage
- Mobile Ion Concentration
- Doping Profiles
- Carrier Lifetime
- Surface State Concentrations
- Debye Length

A wide range of your semiconductor measurement applications can be performed with Princeton Applied Research standard equipment. In addition, complete systems have been assembled to determine semiconductor properties from capacitance and conductance measurements. For detailed information about our products or a series of application notes, call (609) 452-2111 or write Princeton Applied Research Corporation, Material Science Division, P.O. Box 2565, Princeton, N.J. 08540. In Europe contact Princeton Applied Research GmbH, D8034 Unterpfaffenhofen, Waldstrasse 2, West Germany.

obituaries

Fred Allison

Fred Allison, a renowned researcher and teacher in physics, died on 2 August at the age of 92. He devoted his early research efforts in the late 1920's at Alabama's Auburn University to the measurement of the time lag in the Faraday effect. Using magneto-optical methods that were an outgrowth of that research he announced evidence for the existence of deuterium in 1931 and of elements 85 and 87 in 1932. These an-

ALLISON

nouncements came at a crucial time in the rapidly expanding field of nuclear physics and promoted an international interest and growth in magneto-optic based research.

In the fall of 1933 I enrolled at Auburn and immediately sensed the fervent activity resulting from those announcements. Elements 85 and 87 were already known as "alabamine" and "virginium" and were so designated in the *Chemical Rubber Handbook* for over fifteen years. Moreover, in 1932 Urey and his co-workers had published

their evidence for the heavy isotope of hydrogen. However, several laboratories could not confirm the subjective evidence obtained by the magneto-optic apparatus, and papers giving data gathered thereby were not generally accepted for publication after 1936. As an undergraduate I was not intimately familiar with the evidence gained, but I was always impressed with the care, sincerity and the thoroughness displayed in Allison's research. Urey gained a Nobel laureate for his deuterium discovery and elements 85 and 87 ultimately became "astatine" and "francium." Interest in magneto-optics has not entirely abated, and as late as 1966 a substantial report on the Allison method of chemical analysis was issued from one of the federal laboratories.

Allison was born on 4 July 1882 at Glade Spring, Virginia, and obtained an AB degree from nearby Emory and Henry College. While serving on the Emory and Henry science staff during 1911-1920, he spent several summers in graduate work at the University of Chicago, Johns Hopkins University and the University of Virginia. At Chicago he made an early measurement on the viscosity of air that Millikan used in his determination of the electronic charge. At Emory and Henry Allison was instrumental in obtaining funds for the construction and equipping of the observatory, with the bulk coming from his managing a speaking tour featuring William Jennings Bryan. He completed his doctorate (in optics) at the University of Virginia in 1922 and that year came to Auburn as the head of the physics department. While retaining the headship of the department he became dean of the graduate school in 1949, and retired from both positions in 1953. Allison had always retained a love of teaching, particularly that of instructing in undergraduate courses. This affection for teaching beginning students led him to accept a position at Emory and Henry upon his retirement from Auburn. Afterwards he joined

PRINCETON APPLIED RESEARCH

245

See us at Booths 101-102 Physics Show Circle No. 76 on Reader Service Card