

Versatile, rigid and durable. In sizes from 25cm to 3.8 meters. A wide range of modular components also available for all benches. Benches and components interchangeable with most other equipment.

SEND FOR CATALOG

LINGER SCIENTIFIC APPARATUS CORP.

83-45 Parsons Blvd., Jamaica, N. Y. 11432 (212) OL 7-0536

See us at Booth 270 Quantum Electronics Conference Circle No. 45 on Reader Service Card

PHOTON COUNTING CORRELATION

For Use In:

- Light Scattering Spectroscopy
- Laser Doppler (LDV)/Laser Correlation Anemometry
- Cross Beam Spectroscopy
- · Multi-Channel Scaling

Applications in:

- · Measurement of diffusion constants
- Chemical kinetics
 Critical point behavior
 Molecular beam studies
- · Turbulence and flow analysis
- · Optical absorption studies
- Fluorescence studies

Photon counting interfaces for the SAI-42A and SAI-43A digital processing Correlation & Probability Analyzers are now available. These options allow operation as a photon counting correlator accepting the digital train of photodetections present at a discriminator output. The ability to digitally process analog signals is still retained in these instruments.

Standard Photon Counting Options allow: Full Processing (4 bit by 4 bit multiplier), Single Clipping (adjustable clipping level), Signal Averaging Capability, Pseudo Random Cross Correlation Analysis, Probability Analysis

Outstanding Features:

of Channels (points)
Max Photon Counting Rate
Minimum Sample Increments
Storage Capacity (per channel)

SAI-42A 100 SAI-43A 400

80MHz 0.5µsec (2MHz) 30 bits

80MHz 0.2μsec (5MHz) 29 bits

Honeywell

SIGNAL ANALYSIS OPERATION • TEST INSTRUMENTS DIVISION 595 Old Willets Path, Hauppauge, New York 11787 • 516/234-5700

obituaries

which he was able to express himself. His many friends all over the world will deeply miss his kind and noble personality.

> AAGE BOHR Niels Bohr Institute Copenhagen, Denmark

Adolfas Jucys

The sudden death of Adolfas Jucys in his 70th year, on 4 February, deprives theoretical physics of an important and singular figure.

An atomic-structure physicist, proud of having worked with both Douglas R. Hartree in England and with V. A. Fock in Leningrad, Jucys developed single-handedly an important school of theoretical physics in Vilnius, Lithuania. This development went largely unnoticed in the West until social and geographical isolation were overcome in the 1960's, initially through the translation of some major works from that school. A quirk of double transliteration-into Cyrillic and back into roman-often changed Jucys's name to its more nearly phonetic version, Yutsis.

The work from Vilnius enriched and extended the applications of Racah algebra, particularly through the invention of now familiar diagrams related to those of Richard Feynman. Many novel aspects of atomic theory were elucidated by Jucys and collaborators in a long series of papers and in several books.

As travel to and from Vilnius eased again, many of us visited there—finding a most friendly, witty and gentle hospitality—and many of us had the privilege of receiving him as a lecturer and guest. His depth of understanding, his guidance to many and his high scientific integrity made him a universally respected and beloved scientist.

Ugo Fano, Chairman Department of Physics University of Chicago

Arthur J. M. Johnson

Arthur J. M. Johnson, professor emeritus of physics at Montana State University, died on 10 March 1974 in Bozeman, Montana.

Johnson was born on 18 February 1900 in Bayard, Nebraska. He graduated from Nebraska Wesleyan University in 1924, where he was a member of Phi Kappa Phi. He earned his MS and PhD degrees, the latter in 1928, from the State University of Iowa, working in the field of x-ray spectroscopy.