trained as a physicist in his early days. I cannot recommend this book to anyone who wants a lucid introduction into the problems of European technology. There is however one extenuating circumstance: I have not yet seen another book on the subject that is better.

Victor F. Weisskopf Massachusetts Institute of Technology Cambridge

The Crystal Structure of Solids

P. J. Brown, J. B. Forsyth 172 pp. Crane, Russak, New York, 1973. \$15.50 hardcover, \$6.95 paperback

The flow of information from crystalstructure determinations is an essential component in understanding solidstate properties. A variety of crystallographic techniques, including such procedures as recognizing point symmetry, orienting large single crystals, and identifying materials, are rather simple to apply, and indeed they passed into general laboratory use years ago. In contrast the path leading to an accurate and full crystal structure determination is often arduous and is in some cases entirely fruitless, even with the aid of recent major advances. On completion, however, we can know all atomic positions in the unit cell and the amplitudes of each atom's vibration with an accuracy on the order of a thousandth of an ångström, detect variations in atomic ordering as small as one atomic percent, well determine the bonding-electron distribution and, if neutrons are used in a magnetic investigation, the spin distribution and relate the tensor properties of the crystal to the absolute atomic arrangement. The growing number of introductory texts seeking to explain the various steps along this path is now joined by The Crystal Structure of Solids.

Jane Brown, a Fellow of Newnham College Cambridge, and Bruce Forsyth, formerly of Harwell and now of the Rutherford High Energy Laboratory, have collaborated often on x-ray and neutron crystallographic problems since their student days in the Cavendish Laboratory in the late 1950's. Their slim book, intended for students of solid-state physics and materials science, sets out to provide a background in diffraction theory and technique supplemented by illustrations of the principles underlying the stability of crystal structures. The first half of the book deals very lucidly with crystal symmetry, the generation and properties of radiation with wavelength on the order of one angstrom, the theory of crystal diffraction and magnetic scattering and experimental methods for measuring diffracted beams. In the brief space available to Brown and Forsyth, the choice of topics is necessarily arbitrary but their treatment succeeds in familiarizing the reader with many important crystallographic concepts. The second half starts with a simplified quantum-mechanical discussion of the crystal structure of the elements, goes on to consider underlying reasons for the stability of several simple structure types somewhat misleadingly referred to as "polar," presents a brief but discerning introduction to binary alloys and concludes by outlining a possible approach to deducing the crystal structure of a new binary alloy. Among the few errors noted were examples both of omission and commission in a table of systematic absences caused by nonprimitive lattices.

Produced by typewriter composition and photo-offset printing, the lowpriced paperback edition of this book will be useful to many students.

> S. C. ABRAHAMS Bell Laboratories Murray Hill, New Jersey

Fields and Particles: An Introduction to Electromagnetic Wave Phenomena and Quantum Physics

F. Bitter, H. A. Medicus 688 pp. Elsevier, New York, 1973. \$17.95

Physics Vol. 3: Modern Physics

A. L. Reimann 459 pp. Harper & Row, New York, 1973. \$6.95

These are two excellent books, both of them written primarily for students who have completed two years of college physics and who, having a solid background in classical physics, are prepared to study modern physics. The phenomena the books deal with have mainly a quantum-mechanical origin, though both books discuss other topics such as the special theory of relativity and in some depth the problem of electromagnetic radiation. In many ways these books are modern counterparts of Max Born's Atomic Physics (Blackie and Son, 1951).

Each of them is written by authors with previous experience in textbook writing and a serious concern with undergraduate physics education. The book by Arnold Reimann is the third in a series, the first two being introductory texts and the late Francis Bitter of MIT was an active and innovative educator.

Of the two, Reimann's book is considerably shorter and designed for a less sophisticated audience. The discussion of phenomena tends to be qualitative rather than exact, and there is very little in the way of complicated mathematics in the text. This was also true of Born's text, which however contains forty technical appendices. This is not to say that Reimann's book is superficial, for it goes into a discussion of such sophisticated topics as nuclear magnetic resonance, Mössbauer effect and neutrino physics. In all cases the discussion. though naturally brief and qualitative, appeared both accurate and informative. The style in which it is written is also a very pleasant one, easy to follow and unpedantic.

The organization of the book consists of a first section on electromagnetic radiation and special relativity. Atomic physics is then introduced and wave mechanics is developed. Then, he discusses more sophisticated applications of these techniques, both in atomic and solid-state physics.

Subsequent chapters cover nuclear physics, including fission, fusion and even the cycles for converting hydrogen to helium in stars. The final chapters are on elementary-particle physics.

In addition this pleasing book contains an extensive set of problems, with solutions in the back. All of this seems to make it well suited for students wishing to acquire a broad, if not too detailed, understanding of twentieth-century physics.

The book by Francis Bitter and Heinrich Medicus is approximately twice as long as Reimann's and pitched at a higher level. It is designed for more advanced undergraduates, though the authors appear to have also had considerable success using it as a text in sophomore physics courses.

Before going into a more detailed discussion of its merits, let me say that one of the particularly attractive features of this book is its extensive set of historical notes, including brief biographical footnotes of all the major physicists whose work is discussed in the text. There are numerous interesting photographs and quotes, such as a full-page description by Ernest Rutherford of his early alpha-particle scattering that led to the discovery of the nucleus.

The body contains a wealth of material, so that one could be selective if using it as a text for a one-semester course. The approach is at times unorthodox, such as having the Bohr model of the atom come after a wave-