When is Coma Free?

Coma is never free in a spectrometer. You always pay for it in lost energy, lost information, and distorted lineshapes. Some spectrometers have been claimed to be coma-free, but in actual fact, they are not. Coma can, however, be corrected (not eliminated, but reduced), and our CT 103 corrects it better than any other ¾- or 1-meter spectrometer.

The result? A marked improvement in image quality that provides better resolution of spectral detail (such as hyperfine structure), plus increased energy at the detector (better signal-to-noise ratio) when working at high resolution.

How do we back up our claim to the best coma correction? Look at the spectrum (3131Å, Natural Mercury, Pen-ray lamp, 1200 gr/mm grating, second order). Note the hyperfine structure, associated with the 3131.55Å line, which is often obscured by coma. Ask our customers what they think. And, ask us for a reprint of two papers on which we've based our coma correction.*

*A. B. Shafer, L. R. Megill, and L. Droppleman, J. Opt. Soc. Am., 54, 879-87 (1964)

J. Reader, J. Opt. Soc. Am., 59, 1189-96 (1969)

Chromalix interactive technology

1145 Terra Bella Ave., Mountain View, CA 94040

Phone: (415) 969-1070. Telex: 910-379-6440

present day, group theory, as applied to the solid state, is no longer a developing subject. It is rather a well defined and well understood tool that has become a useful "part of the physicist's luggage."

The foundations of applied group theory, the so-called abstract mathematical theory of groups and their representations, can be presented in a closed form consisting of an almost endless succession of definitions, propositions, lemmas and theorems. This, in one of its most detailed versions I have seen recently anywhere, takes T. Janssen (The Catholic University, Nijmegen, The Netherlands) through 69 very dense pages of Crystallographic Groups; these pages are full of complicated notations and rigorous proofs.

The definition and study of those groups of interest to the solid-state physicist, the crystallographic point groups, the space groups and spin- and time-reversal symmetry require 107 pages more, this time slightly less algebraic but much more geometrical. Physical applications to electron bands, lattice vibrations, electron dynamics and magnetic groups take only 56 pages.

The book is rather short and very dense. The notation is very mathematical and the style "stiff" and rigorous. No appeal is made to intuitive ideas; everything is either defined, derived or proved. But it also is a complete book in its field: no loose ends are left hanging, no theorem is left unproven.

The small type and crowded printing contribute in no small way to the impression of heaviness given by this book. It is not easy reading, but for those interested in the subject matter, it is nice to know that the information is all there; it is possible to have all you ever wanted to know about crystallographic groups on your bookshelves with this single volume.

L. M. Falicov University of California Berkeley

Theory of the Earth's Gravity Field

M. Pick, J. Picha, V. Vyskočil 538 pp. Elsevier, New York 1973. \$34.00

The study of the Earth's gravitational field has always been an area of investigation of interest to geodesists and geophysicists. In the past fifteen years such interests have intensified because of needs in such areas as the precise determination of positions on the surface of the Earth, the accurate computation of missile and satellite trajectories and the potential for gaining in-

sight into Earth studies from an analysis of global and local variations of the gravity field. The publication of this book follows the publication of books in the same or allied areas by M. Caputo (1967), W. Heiskanen and H. Mo-ritz (1967), P. Melchior (1971), J. Levallois (1970) and others. Theory of the Earth's Gravity Field consists of a series of chapters individually written and identified as such by one of three authors, each of whom is an active worker in the field of gravimetric (or physical) geodesy. They completed the material for the book in 1970 with this translation from the Czechoslovakian appearing in 1973.

The material discussed in the book includes the fundamentals of potential theory, classical and modern gravimetric geodesy and geometric geodesy related to coordinate systems as written by M. Pick. J. Picha has written the sections concerned with gravity measurements, earth tides and time variations of the gravity field. A discussion of the statistical behavior of gravity anomalies, and the geophysical interpretation of gravity anomalies was prepared by V. Vyskočil. Within each chapter certain sections are marked as ones to skip, if desired, on the first reading. There are a total of 1693 numbered equations and a list of 462 references, 100 of which are references to Russian articles. A mathematical appendix (by Pick) derives or discusses various potential-theory problems including spherical harmonics and includes a valuable section on the sums of certain series involving Legendre polynomials.

The material discussed in the book is generally well handled relative to the space used for it. This is especially true of the theoretical parts of the book. One aspect that seems to be lacking in some areas is a numerical estimate of some of the quantities being discussed. For example, I would have liked to have seen discussion of the magnitudes of various types of anomalies and correction terms, such as the gravity topographic correction.

In the discussion of absolute gravity measurements, additional information could have been given with respect to some of the precise measurements made by Faller, and by Sakuma using free-fall types of experiments. Such important work has not been referenced in the book.

One of the larger areas not discussed in this book lies in the field of the determination of the external gravitational field of the earth. In the past few years considerable progress has been made through the determination of gravitational potential coefficients by the analysis of satellite orbits. These methods brought, for the first time, accurate information on the low-

do you need this solution set?

0.532µ + OPO = 2.00µ to 3.40µ 0.562µ + OPO = 0.73µ to 0.85µ 0.659µ + OPO = 0.90µ to 2.50µ

Although this is not a rigorous solution set by mathematical terms, it has been the solution to a number of problems for many scientists. It indicates that the Chromatix OPO (optical parametric oscillator) changes green, yellow, and red photons into tunable IR photons. How? The OPO uses a non-linear crystal to convert visible from our frequency-doubled Nd:YAG laser into IR. Servo-loop temperature control of the crystal is used to tune the output IR frequencies.

For over three years, scientists throughout the world have been using the Chromatix OPO in experiments like these: selective excitation for isotope separation and energy transfer studies; long path (>1 km) gas absorption measurements; two-photon spectroscopy; photoluminescence and excitation studies in semiconductors.

If you've been working with the limited tuning range of a dye laser and wish you had a tunable source of energy in the near IR, why not consider the Chromatix OPO? It's easy to operate, it's reliable, and it works.

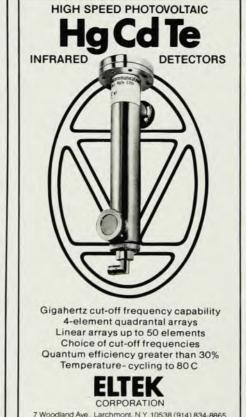
For the full story, call or write Chromatix.

1145 Terra Bella Avenue Mountain View, California 94040 (415) 969-1070 Telex: 910-379-6440

6903 Neckargemünd/Dilsberg Unterestrasse 45A West Germany

Booth 270 QUANTUM ELECTRONICS CONFERENCE Circle No. 35 on Reader Service Card

Defeat 1/f noise and power line pickup in **vour PHOTOMETRIC** experiment!


With our new Model 181 Current Sensitive Preamplifier and a lock-in amplifier, you can modulate your light beam at any frequency up to one hundred kilohertz-more than enough to beat low frequency interference and flicker noise. You won't have to give up sensitivity either-in fact, with an internal noise current of only 4 fA/Hz^{1/2}, the Model 181/lock-in combination can resolve currents typically less than 1 fA(10⁻¹⁵A). And, you don't have to worry about the photodetector's quiescent current or stray light, because the Model 181 can handle dc inputs up to 10 times its current-to-voltage conversion setting without overload.

Find out how our Model 181 Preamplifier can simplify your photometric measurements. Write or call Princeton Applied Research Corporation, Post Office Box 2565, Princeton, New Jersey 08540. Telephone [609] 452-2111. In Europe contact Princeton Applied Research GmbH, D8034 Unterpfaffenhofen, Waldstrasse 2. West Germany.

IPPLIED

PRINCETON

Circle No. 37 on Reader Service Card

degree behavior of the Earth's gravity field. Such methods and results are not discussed in this book. In addition the authors do not present methods for the computation of the gravitational vector in space from terrestrial gravity material (or satellite data).

Finally, it could be noted that the statistical analysis of gravity material has received considerable attention in the literature in the past few years. However, only five pages of discussion are related to this subject in a notation that could have been much improved by the use of matrices.

This book would be valuable as a text in a course in theoretical problems in gravimetric geodesy. It is written in such a way that, by the proper selection of material, either an elementary or an advanced-level course could be given. In addition the book will be a welcome addition to the library of a researcher involved with the determination of the Earth's gravity field from terrestrial measurements.

To summarize, I liked this book from its theoretical point of view. I found many useful equations that I had not seen before. Numerical information and considerations related to the external gravitational field, however, will have to be found elsewhere.

> RICHARD H. RAPP The Ohio State University Columbus

The Titius-Bode Law of Planetary Distances: Its History and Theory

M. M. Nieto 161 pp. Pergamon, New York 1972. \$11.00

Virtually every student taking a course in elementary astronomy is accosted with "Bode's Law" which, in its most usual form, is presented as the successive terms in the series

$$r_n = (4 + 3 \times 2^n)/10$$

where $n = -\infty, 0, 1, 2, ...$ These terms very nearly agree with the semimajor axes (mean distances) of each successive planet from the Sun, taking the Earth's mean distance as the unit of distance (one astronomical unit or AU). It is then recounted that Johann Bode, a German astronomer, observed (as did a number of his predecessors including Kepler) that at $r_n = 2.8$ AU, between the orbits of Mars and Jupiter, there existed no planet. After an international observing campaign organized by Bode, the first of a large number of minor planets or asteroids, Ceres, was discovered on the first day of the nineteenth century. Most textbooks will also point out that this law was first published by Titius.