

The Reinvention of the Wheel!

It might seem ridiculous, but we've developed a variable speed chopper that mounts right on an optical bench just like the rest of your opti-cal components. And it has a few other unique features too:

- Movable Aperture PositionRapid Blade Interchange
- Chopping Rates to 7000 Hz
 Phase Locked Speed Control
 Auxiliary Sync Output
 Modest Price

So if you're tired of giant cartwheels and one note shakers, give us a spin. We're at (315)797-4449.

Booth 102 Physics/Optics Show Circle No. 128 on Reader Service Card

Want to solve your micropositioning problems the easy way? Our new 24 page handbook shows you how to stack our versatile PARA-MOUNT™ modules to create 654 different micropositioners. Send for your copy today.

84-49 164th Street • Jamaica, N. Y. 11432 212 523-8497

Booth 57 Physics/Optics Show Circle No. 129 on Reader Service Card

obituaries

occupation he took seriously all his life. Probably because he had not formally submitted a thesis for a PhD and had not even visited England, then the Mecca for Indian scholars, he was not made a professor. A postcard from Einstein with a single sentence to the vice-chancellor of Dacca University saying that many of those in Europe had benefitted by the presence of Bose, later cleared the way to a professorship.

In 1945 he returned to his alma mater as Khaira Professor of Physics at Calcutta University. Later he was vice-chancellor of Vishwabharati, the university established by the Indian Nobel-prize-winning poet Rabindranath Tagore. In later life Bose's interests were centered on the unified field theory and the theory of numbers. He took a very active part in public life in India and was at one time or another the president of all the reputable scientific bodies in India.

The remarkable thing about Bose's ascension to the highest echelons of science was that he got there by his own efforts. It is to be remembered that in those days India was ruled by the British, and there were very few Indian scientists of international reputation. Raman, too, at that time was working on light-scattering experiments at Calcutta and had not yet acquired a reputation. Bose belonged to the school of Bengali intellectuals like Vivekananda, Tagore, Saha and others, who strived to boost the intellectual pride of India, an accomplishment essential to her later political emergence.

Throughout his career Bose was a source of inspiration to younger scientists, and his kindness endeared him to anyone who came in contact with him. He was always ready to help them with their scientific problems and was liberal with his pocketbook whenever the situation demanded.

> JAGADISH SHARMA Feltman Research Laboratories Picatinny Arsenal Dover, New Jersey

Sharma studied physics under Bose at Calcutta University.

Edmund O. Fiset

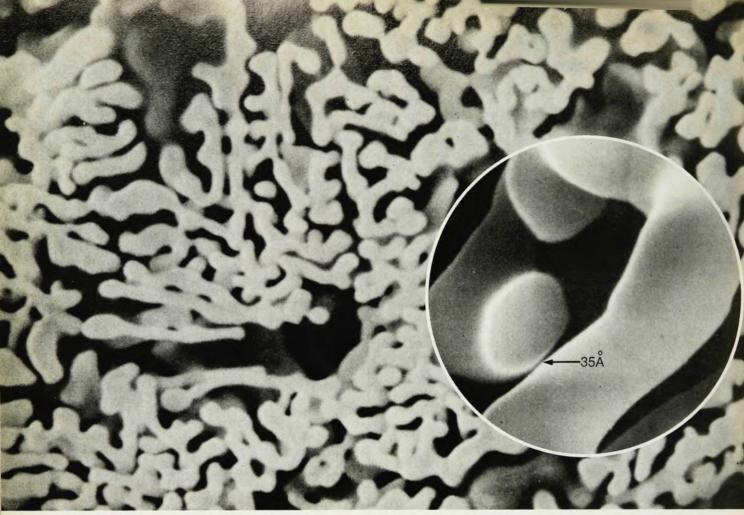
Edmund O. Fiset, a physicist, died on 8 August 1973. He was 33 years old.

Born in Seattle, Fiset earned his MS (1964) and PhD (1967) at the University of Washington. As a postdoctoral research associate at Los Alamos Scientific Laboratory (1968-69), as an assistant professor at Brooklyn College (1970-71), and as a postdoctoral re-

We're your best source for high energy capacitors

If your design parameters call for capacitors with low inductance, high voltage, or high current characteristics - check us. Chances are, we've got them in stock all the way from one-shot to high frequency configurations. But, if what you want isn't among the 1000 standard and special types we make, let us know. Design consultation is free in most cases, and custom fabrication is our

too. Since


1934.

business, See you at the SHOW

COLDOLOGIO

Box 997 Brooksville, Florida 33512 Phone (904) 796-3562 Cable Address: CONDENSER

A copy of our latest catalog is yours for the asking.

Specimen: Aluminum-tungsten dendrite structures. 24,000X magnification (insert 100,000X). 14KV accelerating voltage. Resolution standard proposed by Dr. S. Ballard, National Bureau of Standards

We Here Highly Resolve

Things are getting brighter all the time. Take these two remarkable photomicrographs, for instance. They happen to be 1000 times brighter than those images created from thermionic sources.

What's the secret?

Simple. We introduced the world's first commercial Field Emission Scanning Electron Microscope. And we're still in the business of bringing the seekers and searchers the brightest, high-resolution images in microscopy today. A major difference lies in our revolutionary field emission electron gun. It really delivers. Fast scanning and dynamic viewing of even the finest microstructures. Coated or uncoated. And then there's our totally new system design that lets you scan specimens free from worry about damage, contamination, charging, or other elements that mess up your micrographs.

Each SEM in our growing family features reliable, all-solid-state electronics. Just plug one in, and start examining your own specimen. The same way more and more laboratory researchers throughout the world are doing day-after-day. Let Coates & Welter brighten up your life. Write us for a current brochure: Coates & Welter Instrument Corporation, 777 North Pastoria Avenue, Sunnyvale, CA 94086, (408) 732-8200. A subsidiary of American Optical Corporation.

COATES ≥ WELTER

leading the resolution revolution

Circle No. 131 on Reader Service Card

Wide Band, Precision

CURRENT

With a Pearson current monitor and an oscilloscope, you can measure pulse or ac currents from milliamperes to kiloamperes, in any conductor or beam of charged particles, at any voltage level up to a million volts, at frequencies up to 35 MHz or down to 1 Hz.

The monitor is physically isolated from the circuit. It is a current transformer capable of highly precise measurement of pulse amplitude and waveshape. The one shown above, for example, offers pulse-amplitude accuracy of +1%, -0% (typical of all Pearson current monitors), 10 nanosecond rise time, and droop of only 0.5% per millisecond. Three db bandwidth is 1 Hz to 35 MHz.

Whether you wish to measure current in a conductor, a klystron, or a particle accelerator, it's likely that one of our off-the-shelf models (ranging from $\frac{1}{2}$ " to $\frac{10^3}{4}$ " ID) will do the job. Contact us and we will send you engineering data.

PEARSON ELECTRONICS INC

4007 Transport St., Palo Alto, California 94303 Telephone (415) 326-7285

Circle No. 132 on Reader Service Card

obituaries

search associate at the California Institute of Technology (1971–72), he made significant contributions to nuclear many-body theory.

Fiset was an avid outdoorsman and an enthusiastic mountaineer. In 1972 he left the world of physics, and he and his wife established a primitive-style farm on the Olympic Peninsula of Washington State. He died near his cabin.

> LAWRENCE WILETS Department of Physics University of Washington

Frank D. Enck

Frank D. Enck, professor of physics and, since 1961, chairman of the physics department at Franklin and Marshall College, died on 16 December at the age of 47.

After graduating from Franklin and Marshall College, Enck pursued graduate studies at the University of Maryland, completing his PhD in 1957. Except for the 1966-67 academic year, during which his time was divided between work with Clayton A. Swenson's group at Iowa State University and Jorgen L. Olsen's group at the Eidgenössiche Technische Hochschule in Zurich, Enck spent his entire professional career at Franklin and Marshall.

Although Enck considered himself primarily a teacher, he was active in several areas of research, especially low-temperature thermal properties of superconductors.

LEONARD V. CHERRY Department of Physics Franklin and Marshall College

Heinrich B. Helmbold

Heinrich B. Helmbold, the man responsible for the aerodynamic design of the HE-178, the first jet airplane ever to fly, died on 22 December.

Born in Eisenach, Germany, in 1899, Helmbold was a student at the Humanistiches Gymnasium, the same high school Martin Luther attended several hundred years before. After studying engineering and technical physics at Hanover and the University of Göttingen, he became chief of the theoretical aerodynamical and jet-airplane research department at the Ernest Heinkel Airplane Manufacturing Co. It was here that he worked on the HE-178.

Helmbold came to the US in 1951 to work in the engineering research department at the University of Wichita. He remained there until 1956, when he joined the Fairchild Airplane Division in Hagerstown, Maryland. In 1964 he

Circle No. 133 on Reader Service Card