do you need this solution set?

0.532µ + OPO = 2.00µ to 3.40µ 0.562µ + OPO = 0.73µ to 0.85µ 0.659µ + OPO = 0.90µ to 2.50µ

Although this is not a rigorous solution set by mathematical terms, it has been the solution to a number of problems for many scientists. It indicates that the Chromatix OPO (optical parametric oscillator) changes green, yellow, and red photons into tunable IR photons. How? The OPO uses a non-linear crystal to convert visible from our frequency-doubled Nd:YAG laser into IR. Servo-loop temperature control of the crystal is used to tune the output IR frequencies.

For over three years, scientists throughout the world have been using the Chromatix OPO in experiments like these: selective excitation for isotope separation and energy transfer studies; long path (>1 km) gas absorption measurements; two-photon spectroscopy; photoluminescence and excitation studies in semiconductors.

If you've been working with the limited tuning range of a dye laser and wish you had a tunable source of energy in the near IR, why not consider the Chromatix OPO? It's easy to operate, it's reliable, and it works.

For the full story, call or write Chromatix.

1145 Terra Bella Avenue Mountain View, California 94040 (415) 969-1070 Telex: 910-379-6440

6903 Neckargemünd/Dilsberg Unterestrasse 45A West Germany

we hear that

1949. Since 1957 he has also been chairman of the department of electrical engineering at Monmouth College in New Jersey.

Gerhard Herzberg Award goes to Peter J. Krueger

Peter J. Krueger, a professor in the department of chemistry, University of Calgary, has been given the first Gerhard Herzberg Award of the Spectroscopy Society of Canada. He received the award for his work in vibrational spectroscopy and for his use of infrared and Raman spectroscopy in elucidating force fields and molecular geometry in complex organic molecules.

A native of Canada, Krueger received his PhD from Oxford University in 1958. The following year he went to the University of Calgary. He served as head of the department during 1966-70 and vice-dean of the Faculty of Arts and Sciences from 1970 to 1972.

Formerly the director of astronautics at NASA Ames Research Center, Charles P. Sonett has been named director of the Lunar and Planetary Laboratory at the University of Arizona.

At the Johns Hopkins Applied Physics Laboratory Alvin G. Schulz has been promoted to assistant director for planning, and Theodore O. Poehler has been promoted to head of the quantum-electronics group.

Bolesh Shutnik of Firestone Radiation Research Laboratories has joined the chemistry department at Fairfield University, Fairfield, Conn., as an assistant professor.

Truman O. Woodruff of Michigan State University has been appointed chairman of the physics department. Recently promoted to the rank of professor are Maris A. Abolins, George F. Bertsch, Walter Benenson and Jack Bass. Benedict Oh has been promoted to assistant professor in the department. New appointments to assistant professor include Priscilla J. Colwell of the University of Chicago and Roger E. Markham of the University of Rochester.

At Southern Illinois University, Edwardsville, George A. Henderson and Frederick W. Zurheide have been promoted to associate professor.

New appointments in the physics department at the University of California, Santa Barbara, include Alan Eisner, formerly a research physicist in the high-energy users group at the University, to assistant professor, and David Benard of Johns Hopkins Applied Physics Laboratory, to lecturer. Robert Sugar has been promoted to professor.

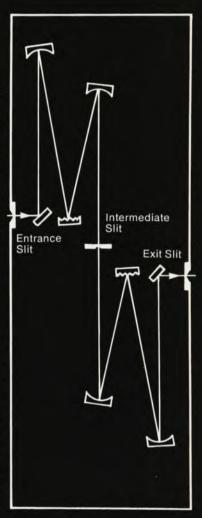
At Florida State University Robert H.
Hunt has been appointed associate
chairman of the physics department.
He has been director of the University's Infrared and Molecular Structure
Laboratory for the past five years.

Frank H. Featherston, formerly Chief of Naval Training Support, Pensacola, Fla., has assumed the post of Deputy and Assistant Chief of Naval Research in the Office of Naval Research, Arlington, Va.

A new appointment as the Abby Rockefeller Mauzé Professor at the Massachusetts Institute of Technology has been accepted by Mildred S. Dresselhaus, professor and associate head of the department of electrical engineering at MIT.

In the physics department at Temple University James D. Gunton and Robert L. Internan were recently promoted to associate professor, and Jack Crow, formerly of Brookhaven National Laboratory, was appointed associate professor.

E. Gale Pewitt, director of the high-energy facilities division of Argonne National Laboratory, has been appointed associate laboratory director for energy and environment.


George L. Lang, formerly with the Atomic Energy Research Establishment, Harwell, UK, has joined the physics department at Pennsylvania State University as a professor. John F. Houlihan was recently promoted to assistant professor in the department.

Recent additions to the staff at Los Alamos Scientific Laboratory include Susan M. Johnson of the Madison Academic Computing Center at the University of Wisconsin, Madison, and Richard L. Cubitt of the US Atomic Energy Commission, Atlanta, to the medium-energy physics division; Calvin E. Moss of the University of Colorado, Boulder, and Sandra Z. Engelke of the University of New Mexico, Albuquerque, to the physics division. Alvin J. Miller of Lawrence Berkeley Laboratory has joined the health research division.

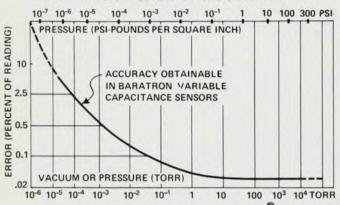
At Rutgers University Harold Zapolsky, formerly program director for theoretical physics at the National Science Foundation, has been appointed professor and chairman of the physics department. Professor and acting chairman Bernard Serin has retired from the

a new Chromatix double spectrometer

Now! Chromatix introduces the DS-40 — a new coma-corrected double spectrometer with unique features. Computer ready, not just computer compatible, the DS-40 is controlled by TTL/DTL logic — it takes orders from you, your computer, or your experiment. Superior stray light characteristics—the result of flocked baffles and no mirrors at intermediate slits. Additive dispersion and coma correction, which increase both throughput and contrast. Non-vignetting (<8%), high-flux, oversize mirrors. What does it all mean? You can now obtain a unique computer-ready, additive double spectrometer that won't cramp your experiment or your budget. Interested? Contact Chromatix.

DS-40 Additive Double Spectrometer: coma corrected, asymmetrical Czerny-Turner mount, with straight through optical path.

chromatix


1145 Terra Bella Avenue Mountain View, California 94040 (415) 969-1070 Telex: 910-379-6440

Pushbutton Remote Control with wavenumber display.

MEASURE VACUUM

TO THIS DEGREE OF ACCURACY

WITH THE MKS BARATRON® CAPACITANCE MANOMETER SYSTEMS

MKS BARATRON Capacitance Manometer Systems use a thin, radially – tensioned metal diaphragm and capacitive sensing to achieve 10-7 torr sensitivity in a simple, rugged, and highly accurate vacuum or pressure measuring system. Ranges from 10-6 to 15,000 torr (10-7 to 300 psi).

Because of the diaphragm technique used, measurement is unaffected by gas composition, changes of composition or presence of vapors. Vacuum models can be baked out to 450°C and operated hot to avoid condensation. These gauges eliminate glass and mercury handling problems, and will handle many industrial gases and corrosives including UF 6 and fluorine.

Many models to choose from, including ultra high accuracy laboratory models and new, rugged, economical industrial models for low pressure process work.

Digital, analog, or meter readouts remote to 1,000 feet. Direct pressure unit readings.

TYPICAL APPLICATIONS INCLUDE

- Replacement of liquid manometers and McLeod gauges.
- Replacement of Thermocouple, Pirani and Alphatron gauges.
- Industrial: pressure control; leak testing; gas flow; vacuum metal-lurgy; pollution control; chemical and UF₆ process, and food process.
- Calibration standard and vacuum standard.
- Sputtering and vacuum furnace.
- Analysis: mass spectrometer, surface area, and adsorption.
- High Purity 450°C bakeout.
- Gas backfilling or mixing.
- Wind tunnel and space chambers.
- Corrosive gases, dirty gases, radioactive and conductive gases.

Representatives throughout the world

KS INSTRUMENTS. II

25 Adams St. Burlington, Mass. 01803 Tel: 617-272-9255 Telex: 94-9375 Circle No. 60 on Reader Service Card

GERMANIUM RESISTANCE THERMOMETER

"The Courier Of The Low Temperature Scales"

ACCURATE - SENSITIVE - RELIABLE OVER 5 YEARS OF SERVICE

CryoCal Calibration Service

1.5 to 100K 57 Data Points

Traceable To IPTS₆₈,NBS₆₅,T₅₈ Computer Interpolation Tables

Ai (log10T) log10R =

for details write or phone -

P. O. Box 10176 1371 Avenue "E" Riviera Beach, Fla. 33404, U.S.A. Call 305 842-4750

Circle No. 61 on Reader Service Card

OF ATOMS, MOLECULES, SOLIDS, NUCLEI, AND PARTICLES

By Robert Eisberg, University of California, Santa Barbara; and Robert Resnick, Rensselaer Polytechnic Institute

An elementary quantitative treatment of the phenomena of quantum physics from the point of view of quantum mechanics. The book's basic approach is to develop elementary quantum mechanics, then use the theory to present analytical treatments. Emphasis is on effective teaching features used in the classroom for many years with great success. These include worked out examples, thought questions and tested problems. Coverage of the five fields of quantum physics is unusually complete and well balanced for an elementary book. Written with great clarity, this book makes an excellent text

1974 In Press

For a complimentary copy, contact your Wiley representative or write to Art Beck, Dept. 925, N.Y. Office. Please include course title, enrollment and present

JOHN WILEY & SONS, Inc.

605 Third Avenue, New York, N.Y. 10016 In Canada: 22 Worcester Road, Rexdale, Ontario price subject to change without notice

Circle No. 62 on Reader Service Card

we hear that

University to accept an appointment at Manchester University, UK. Joseph Johnson III, formerly chairman of the physics department at Southern University, has been appointed associate professor. William Glaberson and Charles Glashausser have been promoted to associate professor.

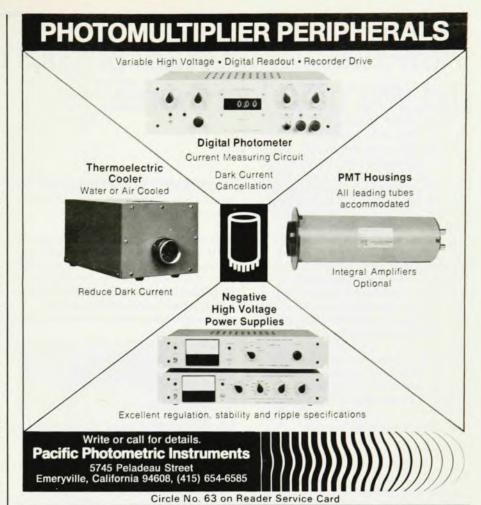
Richard Blank, formerly senior design engineer with Heath/Schlumberger Corp, has joined GCA/McPherson Instrument Corp as a staff physicist.

The new chairman of the department of physics at the University of Florida is Lewis H. Nosanow, formerly of the University of Minnesota. Wiley P. Kirk, from the State University of New York, Stony Brook, has been appointed assistant professor of physics.

At Florida International University Kenneth Hardy has been promoted to associate professor of physics, and Ralph Morganstern, formerly with the Centro de Investigacion del Instituto Politécnico Nacional in Mexico City, has been appointed assistant professor.

At Bell Telephone Labs Warren E. Falconer has been promoted to director of the newly organized Physical Chemistry Research Laboratory.

In the physics department at Kansas State University James C. Legg has been promoted to professor and John Evans to associate professor. Alvin Compaan, of the University of Chicago and New York University, has joined the staff as an assistant professor.


With the General Motors Corp Research Laboratories since 1960, Richard W. Rothery has been appointed assistant department head of Transportation and Urban Analysis.

Formerly at Loughborough University of Technology, UK, Martin V. Lowson has accepted a position as chief scientist at Westland Helicopters Ltd, UK.

Israel Dostrovsky, who has served for the past year as acting president of the Weizmann Institute of Science, Israel, has been elected president of the Institute.

Harry Lustig, associate dean of science at City College of the City University of New York, has been named dean of the College of Liberal Arts and Sciences.

Paolo Di Vecchia, of CERN, has been appointed assistant professor at Nordita, the Nordic Institute for Theoretical Atomic Physics.

Your Best

Source

FOR

"Off-The-Shelf"

OPTICS

IN THE U.S.A.

ROLYN OPTICS

300 North Rolyn Place P.O. Box 148

Arcadia, Calif. 91006

Circle No. 64 on Reader Service Card

RF & MICROWAVE SOURCES INFRA-RED, LF, UHF and VHF

RADAR SYSTEMS: 150 MHZ to 35 GHZ

AUTOTRACK ANTENNA MOUNTS: Nike Hercules, Nike Ajax, SCR 584. Capacity 50 lbs. to 10,000 lbs. Light Airborne to Sage Systems

RADAR INDICATORS: PPI-RHI-A/B/C/Scopes

PULSE MODULATORS: 25KW to 10 Megawatts

HIGH VOLTAGE POWER SUPPLIES: Up to 20KV 2A

MICROWAVE TUBES: TWT, Klystron, BWO, Carcinotron, Magnetron Every Frequency

MICROWAVE COMPONENTS

SONAR SYSTEMS

SEND FOR FREE 24 PAGE CATALOG ON YOUR LETTERHEAD

RADIO RESEARCH INSTRUMENT CO.INC.

3 Quincy Street, Norwalk, Ct. 06850 (203) 853-2600

Circle No. 65 on Reader Service Card

PHYSICS TODAY | FEBRUARY 1974

How many important physics articles did you miss last month?

Finding the article you need can sometimes be like looking for that needle in the haystack if you are still "browsing" through journals whenever you get a chance. The world's physics literature has increased so much in the last few years that you can no longer be assured of seeing all the important articles in your area of interest by subscribing to a few journals. Even with access to all the journals, do you really have time to look through each of them?

Why take a chance on missing the article that could save you hours of valuable research time and thousands of dollars? Current Physics Titles (CPT) is your guarantee that you won't miss that important article.

Current Physics Titles quickly alerts readers to the contents of the world's most widely read physics journals. Each issue of Current Physics Titles contains: Titles of articles. Author's names. Address of first listed author. Journal titles. Volume. Year and page number.

Keywords from the articles to augment the title. Indication of whether the article is experimental or theoretical, or both.

Microfilm frame numbers of all articles appearing on Current Physics Microform, a monthly edition of 35 AIP journals on microfilm.

Current Physics Titles is published in the form of three separate journals covering these fields:

SOLID STATE

General Interest. Applied Mathematics. Quantum Mechanics. Statistical Physics. Crystallography. Lattice Dynamics. Transport Phenomena. Super-conductivity. Magnetic Materials. Magnetic Resonance. Optical Phenomena. Interaction of Radiation and Solids. Physics of Surfaces.

ATOMS & WAVES

General Interest. Applied Mathematics. Quantum Mechanics. Statistical Physics. Atomic Physics. Molecular Physics. Physical Chemistry. Physics of Fluids and Plasmas. Vacuum Physics. Cryogenics. Acoustics. Optics. Geophysics. Biophysics.

NUCLEI & PARTICLES

General Interest. Applied Mathematics. Quantum Mechanics. Relativity. Statistical Physics. High-energy Physics. Nuclear Physics. Plasma Physics. Astronomy. Astrophysics. Cosmic Rays.

Each of the subject areas is broken down into detailed specialties using a classification scheme developed for physics by the American Institute of Physics.

Subscription rate/journal: \$35/year (domestic); \$15/year (domestic)— Member of AIP or Affiliated Society

Current Physics Titles is published monthly by the American Institute of Physics.

To order, write to:

Current Physics Titles American Institute of Physics Marketing Services 335 East 45th Street New York, N.Y. 10017

Sample Entry from CPT

Field-dependent conductivity of chalcogenide glasses (E) D. K. Reinhard, F. O. Arntz, D. Adler

Appl. Phys. Lett. 23, 521 (1 Nov. 73) CPM-7311A0029

Appl. Phys. Lett. 23, 521 (1 Nov. 73) CPM-7311A0029 Te₄₀As₃₅Si₁₅Ge₇P₃. (Department of Electrical Engineering and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Current Physics Titles covers these journals and translations:

Acta Crystallographica A and B AIP Conference Proceedings American Journal of Physics Annals of Physics (New York) Applied Optics, incl. Supplement Applied Physics Letters Applied Spectroscopy Astronomical Journal Astrophysical Journal, incl. Supplement and Letter Canadian Journal of Physics Chemical Physics Letters Helvetica Physica Acta High Temperature Japanese Journal of Applied Physics JETP Letters Journal of Applied Physics Journal of Chemical Physics Journal of Geophysical Research

Journal of Mathematical Physics Journal of Physical and Chemical Reference Data, incl. Supplement Journal of Physics A,B,C,D,E and F Journal of the Acoustical Society of America

Journal of the Optical Society of America Journal of the Physical Society of Japan, incl. Supplement

Journal of Physics and Chemistry of Solids Journal of Vacuum Science and Technology

Molecular Physics Nuclear Physics A and B Nuovo Cimento A and B Nuovo Cimento: Rivista Optics and Spectroscopy Physica (Utrecht)

Physica Status Solidi B Physical Review A, B, C and D Physical Review Letters

Physics Letters A and B Physics Reports (Physics Letters C) Physics of Fluids, incl. Supplement Proceedings of the Royal Society, Series A Progress of Theoretical Physics, incl.

Supplement Review of Scientific Instruments Review of Modern Physics, incl.

Review of Modern Physics, incl. Supplement

Soviet Astronomy—AJ Soviet Journal of Nuclear Physics Soviet Journal of Optical Technology

Soviet Journal of Oparticles and Nuclei

Soviet Journal of Quantum Electronics Soviet Physics—Acoustics

Soviet Physics—Crystallography Soviet Physics—Doklady

Soviet Physics—JETP Soviet Physics—Semiconductors

Soviet Physics—Solid State Soviet Physics—Technical Physics

Soviet Physics-Uspekhi

we hear that

At the Massachusetts Institute of Technology Francis E. Low, the Karl Taylor Compton Professor of Physics, has been appointed head of the Center for Theoretical Physics. He succeeds Herman Feshbach, who has become head of the department of physics. Victor F. Weisskopf resigned as department head in July to devote more time to lecturing and research. John G. King, distinguished teacher and researcher in the department of physics, has been named an associate director of the Research Laboratory of Electronics at MIT.

obituaries

Wolfgang J. Ramm

Wolfgang J. Ramm, a research physicist with the US Army Electronics Technology and Devices Laboratory, Fort Monmouth, New Jersey, died on 6 November at the age of 65.

Ramm was born in Leipzig, Germany in 1908. He studied at the University of Leipzig and received his PhD in physics in October 1934. When his thesis advisor, Peter Debye, became director of the Kaiser-Wilhelm-Institute for Physics in Berlin in 1936, Ramm accompanied him as a member of his scientific staff. During this time he was engaged in studies of the optical and high-frequency electrical properties of polar liquids. He remained at the Institute under Debye's successor, Werner Heisenberg, and conducted a research program on radioactive isotopes and on neutron diffusion and absorption cross-sections, including their temperature and velocity dependence.

Ramm came to the US in 1947 under a Department of Commerce "Paperclip" contract. After working on ultrasonics and solid-state physics problems for one year at the US Naval Shipyard in Philadelphia, he transferred to Fort Monmouth where he initiated and carried out major investigations devoted to nuclear-radiation dosimetry, magnetic detection of high-altitude explosions and hydromagnetic wave propagation in the ionosphere. More recently he worked on absolute dosimetry techniques for use at high-intensity nuclear weapons simulators and on the analysis of anisotropic dose distribution near interfaces of materials differing in atomic number. During 1956-57 he was instrumental in planning experiments at the Food and Container Institute in Chicago in connection with nuclear radiation sterilization of foods.

Beyond his professional field, Ramm maintained a lifelong and very active interest in arts and sciences. Having considered a career in music in his youth he remained an accomplished musician who knew and loved, in particular, the works of Bach, Mozart and Brahms. Throughout his later life he continued to play both the organ and

piano. He kept up with developments in astronomy and astrophysics which he had studied in Leipzig, and his vivid interest in linguistics led him to study Russian, Japanese and Chinese in some depth during recent years. His interest in both spiritual man as

RAMM

well as modern-day social issues evidenced itself in his philosophy and by service to his church.

Those of us privileged to have known him remain enriched by the experience. He will be very much missed by all of his friends and colleagues.

CARL A. ACCARDO
Epsilon Laboratories, Inc
GEORGE BRUCKER
RCA
EBERHARD BOTH
ABE COHEN
STANLEY KRONENBERG
Fort Monmouth

Dolphus E. Milligan

On 18 October Dolphus E. Milligan, chief of the photochemistry section of the National Bureau of Standards, died suddenly in his office. A few days before his death, he had learned that his studies of the spectra of molecular

Squid*...

superconducting quantum interference device

SHE SQUID instruments are used wherever ultrasensitive measurements must be performed. Recent applications include:

geomagnetic fluctuations superconductivity biomagnetism low temperature resistivity thermopower studies nuclear magnetism magnetic thermometry infrared detection temperature dependent susceptibility VLF detection weak magnetic impurities NMR noise thermometry remanent and induced magnetization teaching lab experiments

Basic Magnetometer, Model MGS-20

Variable slew control unit Model VSC

Provides the extremely fast response and wide dynamic range required for sensitive magnetic measurements in an unshielded, noisy ambient.

Digital/analog output display, Model DAC. Features resolution of 1/108 of full scale to enable observation of small changes on a slowly-varying, large amplitude background signal.

Contact us for details on the complete line of SHE SQUID instruments.

S.H.E. CORPORATION

CRYOGENIC INSTRUMENTS AND SYSTEMS
11661 SORRENTO VLY RD | SAN DIEGO, CA 92121 | 17141 453-6300

Circle No. 66 on Reader Service Card