
A theory of competitive running
Using simple dynamics one can correlate
the physiological attributes of runners with world track
records and determine the optimal race strategy.

Joseph B. Keller

World records for running provide data
of physiological significance. In this
article, I shall provide atheory of run-
ning that is simple enough to be ana-
lyzed and yet allows one to determine
certain physiological parameters from
the records. The theory, which is
based on Newton's second law and the
calculus of variations, also provides an
optimum strategy for running a race.

The records give the shortest time T
in which a given distance D has been
run. Our theory determines this func-
tion theoretically in terms of the fol-
lowing physiological quantities: the
maximum force a runner can exert, the
resistive force opposing the runner, the
rate at which energy is supplied by the
oxygen metabolism, and the initial
amount of energy stored in the runner's
body at the start of the race. By fit-
ting the theoretical curve to four ob-
served records, these quantities can be
determined and the other records can
be predicted. Alternatively, by mea-
suring these quantities by independent
physiological studies, one can use the
theory to predict all the track records
to which it applies.

The theory accounts for the main
features of the records at distances
from 50 meters to 10 000 meters. How-
ever, it does not account for the rec-
ords at larger distances. These range
up to 59 days for 5560 miles, the dis-
tance from Istanbul to Calcutta and
back, set by M. Ernst (1799-1846).1

Other physiological factors must be in-
cluded to account for these records.

Optimal running strategy

A runner's speed varies during a
race; we assume that the speed, r(f), is
chosen in the way that minimizes the
time T required to run the distance D,
subject to physical and physiological
limitations. We shall determine this
optimal speed variation v{t) by formu-
lating and solving a mathematical
problem in optimal control theory.

The theory predicts that the runner
should run at maximum acceleration
for all races at distances less than a

critical distance Dc = 291 meters.
Thus the races at distances less than
291 meters should be classified togeth-
er as "short sprints" or "dashes." For
D greater than 291 meters the theory
predicts maximum acceleration for one
or two seconds, then constant speed
throughout the race until the final one
or two seconds and finally a slight
slowing down. This result confirms
the accepted view that a runner should
maintain constant speed to achieve the
shortest time, and refines that view by
fitting the constant speed to appropri-
ate variable speeds during the initial
and final seconds.

The author is professor of mathematics at
the Courant Institute of Mathematical Sci-
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The mathematical solution
for the optimal velocity

For D < Dc the critical distance we
have f(t) = F. and equations 2 and 3
yield

1/(0 = FT{\ - e " ) (AD
Then equation 1 becomes

O = FT -(J + err* - l) (A2)

This gives the relation between D and 7"
for D < Dc. To find E(t) we use equa-
tion Al for v{t) in equations 5 and 6 to
obtain

E(t) = £„ + at -

F'T-V- + e ' • - lj (A3)

By setting E(TC) - Owe get the largest
value of t for which the assumption / =

F is consistent with equation 7. Then
Dc is the value of D given by equation
A2 with T = Tc.

For D > Dc, v(t) is given by A2 for 0
< t < t-\. and by v(t) = v{tO = con-
stant for fi < t < t2. In the interval l2
< t < T, v(t) is obtained by setting E(t)
= 0 in equation 5, which yields t =
a/v. With this value of F, equation 2
can be solved with the result

M M = OT + [('-(?,) - UT]I>-- '

(A4)

The times ^ and tz can be found by
computing D from equation 1, using the
three expressions for v(t) just given,
and then maximizing D with respect to
fi and ti The fact that v{t) equals a
constant in the middle interval can be
proved by the methods of the calculus
of variations.

PHYSICS TODAY SEPTEMBER 1973 43



o
o

The 220-yard dash. The optimal velocity v(t) is plotted versus t.
f(t) = F is maximum throughout the race.

T

The propulsive force
Figure 1
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The 400-meter run. The optimal velocity v{t) is plotted versus f. The propulsive force
fit) = F is a maximum during the initial 1.78 seconds. After this initial acceleration, v
remains constant until 0.86 seconds before the end of the race when the oxygen supply E
becomes zero. Finally E{t) remains zero during the last 0.86 seconds. This can be un-
derstood by thinking about a car with a limited amount of gas traveling over a distance D
in the shortest time; the fuel should be used up shortly before the end. Figure 2

Runners at distances greater than
291 meters often finish with a kick
rather than with the negative kick of
the optimal solution. This discrepan-
cy indicates either that they are not
doing as well as they could or that the
theory is inadequate. Presumably
their goal is to beat competitors rather
than to achieve the shortest time, and
that goal influences their strategy.
But if they ran at the optimal speed
determined by the theory, they might

do even better at beating competitors.
Some trials in which runners attempt
to follow the optimal strategy might
determine which is the correct expla-
nation, and whether the optimal solu-
tion is better than the usual strategy.

In our theory we assume that the re-
sistance to running at speed u is pro-
portional to v. Another assumption,
suggested by measurements of R. Ma-
garia and his collaborators,2-3 is that
the resistance is a constant indepen-

dent of the velocity. We nave wonted
out the theory in this second case for
comparison and found that it leads to a
quite unsatisfactory prediction, which
indicates that it must be rejected if the
other assumptions of the theory are
correct.
Formulation of the theory

The length D of a race is related to
the time T required to run it by the
equation

D = /
Jo

v(t)dt (1)

The velocity vit) is determined by the
equation of motion, which we assume
to be

(2)

In this equation fit) is the total propul-
sive force per unit mass exerted by the
runner, part of which is used to over-
come the internal and external resis-
tive force V/T per unit mass. It is an
assumption that the resistance is a lin-
ear function of v and that the damping
coefficient r is a constant. Initially
the runner is at rest; so

r(0) =0 (3)

The force fit) is under the control of
the runner; so we may think of it as
the control variable. The runner must
adjust it so that T, determined by
equation 1, is as small as possible when
v(t) is the solution of equations 2 and
3. There are two restrictions on fit).
First, there is a constant maximum
force per unit mass F that the runner
can exert; so / must satisfy the inequa-
lity

fit) < F (4)

Second, the rate fv of doing work per
unit mass must equal the rate at which
the body supplies energy. This rate is
limited by the availability of oxygen for
the energy-releasing reactions, which
we shall now consider.

Initially there is a certain quantity of
available oxygen in the muscles, and
more oxygen is provided by the respi-
ratory and circulatory systems. It is
convenient to measure the quantity of
available oxygen in units of the energy
it could release upon reacting. Thus
we denote by E(t) the energy equiva-
lent of the available oxygen per unit
mass at time r, by Eo the initial
amount, and by the constant a the
energy equivalent of the rate at which
oxygen is supplied per unit mass in ex-
cess of the non-running metabolism.
Then the equations of energy or oxy-
gen balance can be written in the form

dE , (5)

In addition E satisfies the initial con-
dition

44 PHYSICS TODAY/SEPTEMBER 1973



£(0) = £„ (6) 12

Because the energy equivalent of the
available oxygen can never be negative,
E also must satisfy the inequality

E(t) > 0 (7)

This is, indirectly, the second restric-
tion of f(t).

Now the runner's problem and ours
is to find v(t), f(t) and E{t) satisfying
equations 2 through 7 so that T, de-
fined by equation 1, is minimized.
The four physiological constants T, F,
a and Eo are given, and so is the length
of the race D. In other words, the
problem is to find the rate of consump-
tion of the initial oxygen supply in
order to run the distance D in the
shortest time.

My solution to this problem gives
the result that for D not greater than
Dc, where Dc is the critical distance
mentioned above, fit) = F, and v in-
creases monotonically. For D greater
than Dc, u{t) increases for t less than
t\, v is constant for t between ti and
(2. and v decreases for t greater than ti
until the end of the race, T. Figure 1
shows the optimal velocity v(t) as a
function of t for the 220-yard dash,
which is a short sprint. In figure 2 the
optimal v(t) is shown for the 440-meter
run, (D greater than Dc).

Comparison of theory and observation

A. V. Hill first pointed out the phys-
iological significance of track records.3

Since then, many investigators have
tried to extract physiological informa-
tion from these records,1 but they were
hampered by a lack of any theory of
running that correlates the data.
Twenty-two world records for dis-
tances from 50 yards to 10 000 meters
are shown in Table 1. The first four
are taken from data published by B. B.
Lloyd,4 and the others are from the
Reader's Digest Almanac 1972, page
980. We have determined the two
constants T and F to yield a least-squares
fit of the times given by the theory to
the record times for the first eight
races, which we assume to be short
sprints. Then we determined a and Eo
to give a least-squares fit of the times
given by the theory for the remaining
14 races. In both cases we minimized
the sum of the squares of the relative
errors. The values of the four physio-
logical constants obtained in this way,
appear in Table 2. Also shown there is
the value of Dc computed from the
theory with these constants. We see
that Dt. = 291 meters is between 220
yards and 400 meters; so the first eight
races are short sprints and the other 14
are not. The ratio of the initial oxygen
supply, Eo. to the rate of oxygen sup-
ply a is E0/a = 58 seconds. Thus the
initial supply is equivalent to the oxy-
gen that would be supplied by respira-

500 1000

DISTANCE OF RACE (meters)

1500 2000

The average velocity for running a race. The theoretical curve is seen to agree with av-
erage velocities calculated from world records. Figure 3

Distance D

50 yd
50 m
60 yd
60 m

100 yd
100 m
200 m
220 yd
400 m
440 yd
800 m
880 yd

1000 m
1500 m

1 mile
2000 m
3000 m

2 miles
3 miles

5000 m
6 miles

10000 m

Time T
(record)
min:sec

5.1
5.5
5.9
6.5
9.1
9.9

19.5
19.5
44.5
44.9

1:44.3
1:44.9
2:16.2
3:33.1
3:51.1
4:56.2
7:39.6
8:19.8

12:50.4
13:16.6
26:47.0
27:39.4

Table 1. Track Records

Time T
(theory)
min:sec

5.09
5.48
5.93
6.40
9.29

10.07
19.25
19.36
43.27
43.62

1:45.95
1:46.69
2:18.16
3:39.44
3:57.28
5:01.14
7:44.96
8:20.82

12:44.89
13:13.11
25:57.62
26:54.10

Error
(per cent)

-0.2
-0 .4

0.5
-1 .5

2.1
1.7

-1 .3
-0 .7
-2 .8
-2 .9

1.6
1.7
1.4
3.0
2.7
1.7
1.2
0.2

-0.7
-0 .4
-3.1
-2 .7

Average
velocity

D/T
(theory)
m/sec

8.99
9.12
9.26
9.38
9.85
9.93

10.39
10.39
9.24
9.22
7.55
7.54
7.24
6.84
6.78
6.64
6.45
6.43
6.31
6.30
6.20
6.20

'1 sec

1.78
1.77
1.07
1.06
0.98
0.88
0.87
0.84

.80
80
.77
.77
.75
.75

T-t2

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
2.
2.

sec

86
86
08
08
16
31
34
43
60
63
80
82
10
12

tion and by circulation is 58 seconds.
By using the constants in Table 2,

we have computed the time given by
the theory for each race. The results
are shown in Table 1, together with the
average velocity D/T given by the
theory and the values of ti and T - f2
for the races with D greater than Dc.
The error in time between the theoreti-
cal value and the record is also shown in
Table 1 as a percentage. We see that
for the short sprints the error is at

most 2.1%. However, for the longer
races, it reaches 3.1% for the six-mile
race. The average velocity given by
the theory is plotted against distance
in figure 3, which also shows the aver-
age velocities computed from the rec-
ord times. Note that the initial in-
crease and ultimate decrease of the av-
erage velocity is predicted by the theo-
ry quite satisfactorily. In comparing
the theory with the actual records, it
must be borne in mind that the theory
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Table 2. Physiological Constants

r = 0.892 sec
F = 12.2m/sec2

a = 9.93 calories/kg sec
£o= 575 calories/kg
Dc = 291 m

uses a single set of physiological con-
stants at all distances, while the record
holders at these distances undoubtedly
had somewhat different constants from
one another. The theory I have pre-
sented is too simple, because it omits
various important mechanical and
physiological effects. It ignores the
up-and-down motion of the limbs; it
fails to distinguish between internal
and external resistance; it does not
take into account the depletion of the
fuel that uses the least oxygen and the
transfer to the use of less efficient
fuels; it ignores the accumulation of
waste products and the mechanisms of
removing them, and it probably ignores
some other effects as well. A better
theory incorporating some of these ef-
fects might be able to account for the
records at longer distances, as well as
those considered here. In support of
such a new theory, measurements of
the resistive force and the other physi-
ological parameters are needed.

Nevertheless, this theory yields some
definite results, and it would be of in-
terest to adapt it to other types of
races. Ice skating, swimming and
bicycle races, for example, could be
studied, taking into account the special
features of each type of race. Another
interesting problem would be to deter-
mine the influence of hills and valleys
on the optimal velocity in longer races;
this would require only a modification
of the present theory.

This work was supported in part by the Na-
tional Science Foundation. I thank Cesar
Levy and Clyde Kruskal for performing the
calculations, and Thomas J Osier, who n on
the A.A.I'. 50-km race in 1967 and who is
now professor of mathematics at Glassboro
State College, New Jersey, for his comments
on the manuscript.
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