
Exploring phase transformations
with neutron scattering
Analysis of neutron cross sections at various temperatures
around the critical point allow us to view the process by which
a substance transforms from one solid phase to another.

John D. Axe and Gen Shirane

Phase transformations have for many
years intrigued physicists as dramatic
and yet subtle phenomena for study.
In the early 1960's came the belated
realization that there exists a particu-
larly simple mechanism responsible for
a certain class of structural transfor-
mations in solids. This mechanism in-
volves an instability in a mode of vi-
bration of the solid; that is, a "soft
phonon" (one of low energy) is said to
"condense" into the lattice to cause
the phase transformation. The process
is susceptible to experimental study
even in complex structures and has
given us a handle on the dynamics of
this cooperative phenonenon. Here we
will discuss such phase transforma-
tions, which have come to be called
"displacive transformations," and what
can be learned about them by inelastic
neutron-scattering experiments.

The passage of time has seen in-
creasingly sophisticated techniques
(both theoretical and experimental)
brought to bear on phase transforma-
tions and a growing appreciation that
the central questions are fundamental
to many problems with large numbers
of degrees of freedom, problems that
arise in field theories as well as the
study of condensed matter.1 The com-
plexity inherent in the description of
cooperative phase transformations has
caused much of the more fundamental
interest in solid-state phase transfor-
mations to be concentrated on relative-
ly simple mathematical models, which
are most nearly realized in magnetic
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systems. Of course, transformations
involving structural rearrangements of
the constituent atoms in solids have
been known from the earliest solid-
state studies and are understood more
or less thoroughly from thermodynamic
and crystallographic points of view.
But probably because the technologi-
cally interesting and thus most exten-
sively studied examples tended to be
structurally complex, for a long time
structural phase transformations at-
tracted little fundamental interest.

It is necessary to define a generalized
displacive phase transformation and
this is done by reference to the concept
of an order parameter, some quantity
that is nonzero in one of the phases but
vanishes in the other. We do this with
what may be called the "phonon ex-
pansion,"

which states that the displacement
U/t-U) of the kth atom in the /th unit
cell from some given reference position
can be written as the sum of plane
waves with polarization vector £, am-
plitude Q(f), and wave-vector q. Al-
though originally concocted to describe
lattice vibrations (in which case Qw(f)
has a harmonic time dependence) there
is no reason why such an expansion
cannot also be used to describe static
displacements, leading to static com-
ponents of Q. Let a displacive trans-
formation be one in which the order
paramenter can be chosen as the static
component of such a normal phonon
coordinate. In order to describe the
structure that results when such a set
of static displacements becomes incor-
porated into the lattice, we may say by

analogy with superfluid condensation
that a phonon has condensed out. See
figure 1, which shows a displacive
transformation that occurs in stronti-
um titanate, and the box on page 34,
which describes a one-dimensional
model of a displacive transformation.

Soft phonon modes

To study the dynamics of a phase
transformation, we must look at the
time-dependent fluctuations in the order
parameter. These fluctuations form
some sort of excitation of the solid and,
in the present case, these excitations
are just the phonons themselves. Fur-
thermore, we know that near a second-
order transformation, the amplitude of
the fluctuations must diverge. Be-
cause the amplitude of a harmonic
oscillator is inversely proportional to
its frequency, we are led to the conclu-
sion that the frequency of the phonons
must tend towards zero at a second-
order phase transformation. The
physics of the situation is of course
clear, because the frequency of a har-
monic oscillator is a measure of the re-
storing force for the displacement; if
this restoring force tends towards zero
the displacements become free to in-
corporate themselves into the static
structure.

How do these low-frequency temper-
ature-dependent phonon modes, "soft
modes" as they are called, come
about? It is an anharmonic effect and,
therefore, a difficult many-body prob-
lem, but we can get some idea of what
is going on as follows. The potential
energy of a lattice can be expanded in
a power series in displacement starting
with terms in u2, then u3, and so on.
If the displacements are expressed in
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terms of normal coordinates in equa-
tion 1, then if for simplicity we neglect
the cubic term, the potential energy is

z \<
(2)

where a>o is the bare phonon frequency.
This expression simplifies if we ask for
the mean potential experienced by the
^th normal mode.

where the cross products between nor-
mal coordinates of different modes
have disappeared because, at least to
lowest order, normal modes are inde-
pendent. Equation 3 has a harmonic
part u>0u

2Qw
2 plus another part contrib-

uted by the fluctuations from all the
other modes in the system. But both
of these contributions are proportional
to the square of the normal coordinate
of the mode itself, and therefore we
can define a quasi-harmonic frequency

, T) + ] ] + (4)

where we have used the well known
identity for the mean square thermal
amplitude and where n(uK, T) is the
occupation number.

In normal materials at not too high
temperatures, the harmonic part of
equation 4 is always considerably
greater than the anharmonic part,
which supplies a small temperature-
dependent correction. However, occa-

The structural phase transformation that occurs in strontium titanate (SrTiC>3) The stron-
tium atoms are represented by the dark circles and the titanium atoms are represented by
the open circles. The oxygen atoms are located at the vertices of the octahedra sur-
rounding the titanium atoms. Shown here are two complete unit cells of the lattice. The
structural transformation consists of rotations of the oxygen octahedra in alternating di-
rections about the cubic crystal axes. The "soft phonon" that condenses to form the dis-
placive transformation has a wave vector that lies at.the (111) corner (R-point) in the
Brillouin zone. Figure 1
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A one-dimensional model
We picture here a simple one-dimen-
sional representation of a displacement
wave in a periodic lattice with spacing
c. In this case, the polarization vector
£ (arrow) is parallel to the propagation
vector q. The magnitude of q (g -
w/c) has been chosen so that displace-
ments of adjacent atoms are out of
phase. Fluctuations of this sort with
harmonic time dependence are Brillouin
zone-boundary phonons.

\V
If the phonon suffers an instability, a

static displacement or displacive trans-
formation can be the result. For the
particular zone-boundary phonon pic-
tured above, the associated displacive
transformation causes a "dimerization"
of the lattice particles and a doubling of
the unit cell dimension as shown below.

[O i l ]

(000)

The Brillouin zone of the simple cubic perovskite lattice (grey lines) is on the left. This
represents the structure of SrTiC>3 in its high-temperature phase. At about T = 110 K the
substance transforms into a tetragonal form that has a representation in reciprocal space
as a polygonal Brillouin zone of body-centered type (black lines). One face of the low-
temperature polygon is shaded to indicate that it lies on the perpendicular bisector of the
line joining the center of the Brillouin zone V to the point R. The point X lies on another
one of the faces of the Brillouin-zone polygon. The figure on the right is a cross section
of the Brillouin zone containing reflections of the [hkk] type often studied by neutron scat-
tering A denotes the line joining the points R and F. Figure 2

sionally one finds materials in which a
very delicate balance exists where a
negative harmonic contribution is com-
pensated by a positive anharmonic
contribution. Such a material would
be unstable if the lattice could be held
static, but it is actually stabilized by
the fluctuations of the other phonons.
(Although admittedly oversimplified,
this is essentially the reason2 for the
stability of the solid phases of helium.)
Sometimes the balance becomes more
delicate still, and the zero-point anhar-
monic contribution is not enough to
stabilize the lattice configuration but
becomes large enough to do so at some
higher temperature where the fluctua-
tions are greater. At high tempera-
tures, the phonon occupation number
is proportional to the absolute temper-
ature, and in such a case, we may ap-
proximate equation 4 as

a(T - Tn) (5)

where a is a constant of proportional-
ity. We could expect such a material
to undergo a second-order displacive
phase transformation at the tempera-
ture To.

Using much more careful arguments
than given above (one should at least
include third-order anharmonicity3 and
worry about self consistency rather
than replacing (QK

2) by its harmonic
average4) one can still arrive at soft-
mode frequencies governed by equation
5. It is in fact the result of a mean
field theory. We know that the results
of mean field theories are only qualita-
tively correct at best for magnetic sys-
tems. But for many structural trans-

formations equation 5 appears to be
quantitatively correct over a substan-
tial range of temperatures.

This derivation of equation 5 is for
the high-temperature phase. At tem-
peratures below To additional terms
proportional to the square of the ampli-
tude of the condensed phonon displace-
ments appear in equation 4; these terms
renormalize the soft-mode phonon
frequency, and prevent the phonon
frequencies from being imaginary.

Perhaps a few words concerning the
genesis of the idea of soft-mode phase
transformations are in order. A rather
vague connection between the behavior
of optical phonons and structural phase
transformations was made by Chandra-
sekhara Raman and T. M. K. Nedunga-
di5 as early as 1940 as a result of a
study of the «-/? phase transformation
in quartz; Herbert Frolich6 (1949) re-
marked that the well known Lyddane-
Sachs-Teller relation might imply a
connection between soft-optic phonons
and ferroelectric phase transformations
but did not pursue the idea. It was
pursued briefly at the IBM Laborato-
ries in 1958 by Rolf Landauer, Hellmut
Juretsche and Peter Sorokin. Phillip
W. Anderson7 gave a particularly clear
statement of the soft-mode idea in the
same year, although it was little circu-
lated at least in the West. In 1959 the
connection between ferroelectricity and
soft modes occurred to William Coch-
ran, and recognizing its importance, he
elaborated on the idea in a series of pa-
pers8 that simultaneously established
and to a great extent shaped the subse-
quent developments in this field of
study. The first confirmatory experi-

ments9 followed very soon thereafter.
Although historically the idea of a

displacive phase transformation was
first applied to ferroelectrics, it is clear
from the more general definition of a
displacive transformation given above
that displacive ferroelectrics comprise
a rather special subset of the general
case. A ferroelectric must involve a
condensation of a phonon that is both
polar and of long wavelength because
the ferroelectric state must have a
macroscopic polarization. Clearly, in
any material there are many more pho-
nons without these special properties
than there are with them and they are
capable of becoming unstable also, so
that one might expect to find more ex-
amples of nonferroelectric displacive
transformations than ferroelectric ones.
That this is not presently the case is at
least partly due to the fact that ferroe-
lectrics have a divergent macroscopic
property, namely the dielectric re-
sponse, to signal the occurrence of the
transformation. Short-wavelength

phonon instabilities are rather more
subtle. Nevertheless some of these
generalized displacive transformations
illustrate the expected dynamical ef-
fects more clearly than any of the fer-
roelectric transformations thus far
studied. In fact, the very first short-
wavelength phonon instability to be
established, in strontium titanate

), is a nearly perfect example.

Strontium titanate

The first indication of a phase trans-
formation in strontium titanate came
from the observation of discontinuous
behavior of the elastic constants,10 and
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subsequent x-ray and optical work11

established that at about 110 K stronti-
um titanate transforms from a high-
temperature cubic perovskite form into
a low-temperature tetragonal form
with the ratio of the lengths of the a
and c axes differing from unity by less
than one part in 103. Because the
transformation is such a slight one and
also because, as we shall see, it princi-
pally involves only oxygen motion for
which there is very little scattering
power, there was no immediate x-ray
crystallographic evidence concerning
the nature of the internal atomic rear-
rangements. Some five years after the
transformation was discovered, H.
Unoki and T. Sakudo proposed a struc-
ture based upon their study of the
splitting of the electron spin resonance
spectrum of paramagnetic impuri-
ties.12 The displacements they pro-
posed consist of rotation of the oxygen
octahedron surrounding every titanium
ion about a [100] axis (see figure 1).
However, since the oxygen atoms are
shared between octahedra, the sense of
the rotation alternates as one passes
between adjacent unit cells. The new
unit cell has twice the volume of the
original cubic one.

Once the atomic displacements are
known, a very practical test due to
Cochran and A. Zia13 determine
whether or not one is dealing with a
displacive transformation. For if the
low-temperature phase does indeed
represent the condensation of a single
normal phonon mode then the static
displacements should have all of the
symmetry properties of the condensed
phonon, about which certain well de-
fined group-theoretical statements can
be made. If one does indeed find a
one-to-one correspondence between the
symmetry properties of the static dis-
placements and a single normal pho-
non mode, the implication is certainly
strong that that mode is involved in a
transformation and is thus soft.

Paul Fleury, James Scott, and John
Worlock14 realized that Unoki and
Sakudo's proposed displacements did
indeed represent a single normal pho-
non and that the wave vector of the
phonon was such that it lay at the
[111] corner of the simple cubic Bril-
louin zone. This is a special point of
very high symmetry in the reciprocal
lattice, and is known as the "R point."
(It is easy to see that the wave vector
involved must be at the edge of the
Brillouin zone, for it is only for such
wave vector that the displacements re-
verse on passing from one unit cell to
the next. The one dimensional phonon
depicted in the box on page 34 pro-
vides a good example). Fleury and his
colleagues were also able to show that
certain puzzling features of the light-
scattering spectrum of SrTiO3 could be
explained as a result of the change in

unit-cell volume that would accompa-
ny such an atomic rearrangement.

What was lacking was direct verifi-
cation that there was a soft phonon in
the cubic phase with a wave vector at
the R point. Inelastic neutron scatter-
ing is the only technique by which
spectroscopy on such short-wavelength
excitations is possible. Figure 2 shows,
in more detail, changes in the Brillouin
zone implied by the Unoki-Sakudo
model. The Brillouin zone of the sim-
ple cubic lattice, shown by the gray
lines, enclose the reciprocal lattice
point, F. By erecting perpendicular
bisectors between this point and the
new reciprocal lattice points, R, the
Brillouin zone appropriate to the low-
temperature structure is obtained and
can be recognized as a polyhedron of
the body-centered type, showing that
the direct lattice of the new phase is
face-centered cubic. (The slight spon-
taneous strains mentioned earlier,
which accompany the transformation,
are ignored here.) The proper scatter-
ing experiment obviously concentrates
on scattering vectors that correspond
to these superlattice vectors. We
would expect that, at high tempera-
tures, inelastic scattering due to the
soft phonon modes would be seen
about such points but that as the tem-
perature is lowered toward the phase
transition, part of the scattering should
change to elastic Bragg scattering.
Just such behavior was seen by groups
at Brookhaven15 and Chalk River.16

Figure 3 shows the temperature de-
pendence of the soft-mode frequency
above the transformation temperature.
The data were obtained by standard
inelastic neutron-scattering techniques,
with what is known as a triple-axis
spectrometer (see cover). In this in-
strument both the momentum and
energy of the incident and scattered
neutron beams are defined by diffrac-
tion from crystal monochomators. In
this way the momentum and energy
transfer to a sample under study can
be systematically varied. The data are
consistent with the simple molecular
field ideas given above. Figure 4 shows
the dispersion curves for the two lowest
transverse phonon branches with wave
vectors along the [111] direction in
strontium titanate. These curves can
be best understood by realizing that
they represent a normal acoustic
branch starting at zero frequency at
the center of the Brillouin zone and
ending as the upper branch at the Bril-
louin zone edge. The optical mode,
however, has quite an anomalous be-
havior. Its frequency is low and tem-
perature dependent both at the center
of the Brillouin zone and at the Bril-
louin zone edge, and it rises to a maxi-
mum in the interior. Because the two
branches have the same symmetry
properties, they interact and repel one

100 140 180
TEMPERATURE(K)

220

Temperature-dependent phonon energy in
SrTiO3. The solid curve is the prediction
of mean field theory for the energy of "soft
mode" zone-boundary phonons (hu)2 =
a(T — To) where a is the constant of
proportionality and To is the critical tem-
perature. The wave vector of these pho-
nons is q = (1/2, 1/2, 1/2). The data
were obtained in inelastic neutron scatter-
ing experiments. Figure 3
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Dispersion curve of the lowest transverse
phonons in SrTiO3. The wave vectors lie
along the (111) direction. Figure 4
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at 62 K

0.05 0.10 0.15 0.20

PHONON WAVEVECTOR (A)

Dispersion curves for the soft (111) trans-
verse acoustic phonon in NbsSn. The ultra-
sonic velocity, given by the slopes of these
curves, continues to decrease with tem-
perature until it reaches nearly zero at 45 K.
Nb3Sn is a superconductor. Figure 5
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another in the region of the nominal
crossing. In strontium titanate the op-
tical modes at the Brillouin zone cen-
ter are in competition with those at the
Brillouin zone edge. Had the zone
center modes become unstable first,
strontium titanate would have under-
gone a ferroelectric phase transforma-
tion, as it nearly does in any event.

Other materials
Many other materials satisfy the two

principal criteria for displacive phase
transformations, namely anomalously
low-frequency temperature-dependent
phonon response in the high-tempera-
ture phase, and condensation of these
same phonon-like displacements into
the low-temperature structure. Table
1 is a representative list of such mate-
rials that have been studied by neutron
scattering. While for the ferroelectrics
neutron spectroscopy is in a sense a
supplement to less expensive and faster
optical spectroscopy, the a-p quartz
transformation is an interesting exam-
ple of the condensation of a long-wave-
length phonon, which by symmetry
neither absorbs or scatters light in the
high-temperature phase (although it is
Raman active in the low-temperature
phase). Inelastic neutron scattering.

with much less stringent selection
rules, has established strong inelastic
critical scattering near the transforma-
tion temperature.17 In this instance,
as in many others as well, the actual
transformation occurs at a slightly
higher temperature than that at which
the soft phonon frequency goes to zero,
and the order parameter, rather than
increasing continuously from zero, as-
sumes a small nonzero value abruptly
at the transformation temperature and
then grows smoothly as the tempera-
ture is further lowered. It is useful to
think of these transformations, charac-
terized by large critical fluctuations,
but with a finite discontinuity in the
order parameter as being "nearly" sec-
ond order.

Two materials that have the /3-tung-
sten structure, NbsSn and VsSi, un-
dergo an acoustic phonon instability.
The mode softening in this case takes
the form of the velocity of sound tend-
ing to zero for a particular propagation
direction. The results18 of the neu-
tron-scattering investigation of the dis-
persion of the soft acoustic phonon in
Nb^Sn are shown in figure 5. The ex-
tent to which this softening extends to
short wavelengths was of considerable
interest in connection with the extra-

A projection on the basal plane of the Wigner-Seitz unit cell of /i-quartz. The silicon
atoms are represented by the dark circles and the oxygen atoms are represented by the
open circles. The arrows indicate the shifts in the atomic positions between the /j-phase
and the room-temperature a-phase. Figure 6

ordinarily high temperature at which
NbaSn becomes superconducting.
High superconducting transformation
temperatures are favored by low pho-
non frequencies, and if the extreme
softening observed in ultrasonic experi-
ments had extended appreciably to
shorter wavelengths they could have
completely dominated the supercon-
ducting electron-pairing interaction.

The rare earth molybdates, listed in
Table 1 as "ferrielectric," provide an
interesting example of the way nature
can embellish the simple soft-mode
picture. These materials are ferroelec-
trics in the sense that they develop a
reversible macroscopic polarization
below a well defined transformation
temperature. But the lack of a sub-
stantial enhancement of the dielectric
response normally associated with fer-
roelectric transformations puzzled in-
vestigators for many years. Following
a suggestion by Erling Pytte,19 a neu-
tron-scattering investigation revealed
soft-mode behavior not in a long-wave-
length polar phonon as one should ex-
pect for a ferroelectric, but rather in
short-wavelength phonons (the wave
vector at the edge of the Brillouin
zone).20 The atomic displacements
that result from this phonon condensa-
tion reverse this direction in adjacent
unit cells; so it is obvious that this
does not give rise to a ferroelectric mo-
ment.

Perhaps the simplest way to under-
stand this behavior is to write an ex-
pression for the free energy, using L. D.
Landau's idea of a power series expan-
sion in the order parameter.21 The
only new idea is that we must be deal-
ing with two distinct order parameters,
(Q/.H) representing the short-wave-
length zone-boundary phonon conden-
sation observed in the neutron-scatter-
ing experiment, and another (Qo> re-
sponsible for the macroscopic polariza-
tion. Simplified to bare essentials the
appropriate free energy is of the form

F = [ | Q Z B
2 ( Q Z B > 2 + { V < 4 ) ( Q Z 1 ; > V •• ]

+ \ Q , ; { Q , X + V(3)(QlBf(Qo) + •••
(6)

The bracketed terms represent the
"harmonic" and higher-order contribu-
tions to the zone-boundary phonon
condensation. The soft-mode frequen-
cy, HZB -* 0 near the transformation
temperature. The next term is the
leading "harmonic" contribution to the
(Qo) condensation energy, and the ab-
sence of a strong dielectric anomaly es-
tablishes that [}0 has no strong temper-
ature dependence. The final term is a
third-order anharmonic coupling of the
two order parameters having the form
required by symmetry. By minimizing
this free energy we find that (so long as

V(3), V(4) are sufficiently positive) the
high-temperature solution (QZB) = ^° '
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= 0 is replaced by a low-temperature
solution with <QZB) * 0 if fi2

ZH < 0.
Although the transformation is driven
by the soft mode Q /B, there is an in-
duced ferroelectric condensation, (Qo>
caused by the anharmonic coupling
and given by the extremum condition

f\<Q> = E (Q-s.u)/.(Q)exP(QR (7)

The concept of a primary driving order
parameter, which exhibits critical fluc-
tuations as opposed to secondary (driv-
en) order parameters with no soft mode
or enhanced fluctuation spectrum, is
very useful in discussing other solid-
state phase transformations as well.
(It is interesting to note that the pre-
ceding discussion is a counter example
to Landau's theorem that two order
parameters of different symmetry can-
not arise at the second-order transfor-
mation. Landau evidently did not
consider the effect of higher-order cou-
pling terms, and his conclusions re-
main true only for what we term pri-
mary order parameters).

Dynamic crystallography

A prediction of the "soft-mode"
theory of structural transformations
that was touched upon previously is
the similarity of the static atomic dis-
placements occurring in the transfor-
mation to the fluctuating displace-
ments associated with the unstable soft
mode. It would be of considerable in-
terest to test this aspect of the theory,
and fortunately this is possible with
neutron scattering.17-22

The total scattering due to creation
or annihilation or both of phonons in
a vibrational mode n with momentum
transfer /iQ = fc(k0 - k') is proportion-
al to the square of an inelastic struc-
ture factor

dF

where £„„ is defined in equation 1,
/»(Q) = 6,exp[-Wk(Q)] is the coher-
ent scattering length of the *th. nucleus
in the unit cell, modified by a Debye-
Waller factor. R is the equilibrum po-
sition of the *th nucleus relative to the
origin of the unit cell. The wavevector
q of the phonon involved can always be
taken to lie within the first Brillouin
zone, that is, Q = G + q where G is a
reciprocal lattice vector.

Note that the inelastic structure fac-
tor is just the familiar elastic structure
governing Bragg scattering multiplied
by the projection of atomic displace-
ment along the scattering vector Q.
Thus, aside from £<(i, all the quan-
tities in equation 7 can be determined
with reasonable precision by normal
crystallographic methods. Thus, mea-

• suring the integrated scattering inten-
sity of the same phonon at two differ-
ent values of Q (but the same value of
Q - G) is equivalent to measuring two

Temperature dependent changes in the line shape of the phonon responsible for the phase
transformation in KMnF3. As the temperature is lowered toward the transformation tem-
perature (185 K), well defined phonon sidebands collapse into the origin giving a single
peaked response. Similar behavior is observed with a viscously-damped harmonic pendu-
lum as the ratio of the restoring forces to the damping forces are varied. Figure 7

different projections of the phonon dis-
placement vector £k . This is the basis
of the method of phonon-mode deter-
mination by inelastic neutron scatter-
ing, which was first emphasized by
Bertram N. Brockhouse and his collab-
orators.23 The biggest difficulty in
practice is that normal phonon "reflec-
tions" are quite weak (down from
Bragg reflections by approximately
10~4 to 10"5) even with serious com-
promises in experimental resolution.
Fortunately, this problem is consider-
ably less severe for materials with soft
modes, since the phonon scattering in-
tensity is inversely proportional to the
square of the phonon frequency. Fig-
ure 6 shows, for example, the atomic
displacements that link the a and i3
forms of quartz. A comparison of the
static displacement pattern deter-
mined by x rays24 with the dynamic
displacements obtained by analysis of
soft-phonon intensities17 show the two
normalized displacement patterns to
be identical to within the combined
error of both determinations ( « 15%).

In addition to providing insight into
the mechanism of specific phase trans-
formations, the study of soft-phonon
dynamics has proven interesting from
another point of view. We can think
of materials undergoing displacive
phase transformations as having cer-

tain vibrational modes for which, prob-
ably through cancellation of attractive
and repulsive terms, the net quasi-har-
monic potential is unusually small and
is moreover "tunable" with tempera-
ture. Because it is likely that this
same cancellation process extends to
the anharmonic terms as well, displa-
cive phase transformations give us the
opportunity to study vibrational exci-
tations with a relatively small and
manipulatable harmonic content, and
as we might expect certain novel
anharmonic effects are observable.
The more dramatic effects seen to
date occur in the soft phonon line
shapes, which reveal considerable de-
tail into the processes by which soft
phonons decay23 These line shapes
for KMnF3 are shown in figure 7 for
several temperatures between 572K
and 194K.

Although by no means all structural
phase transformations are driven by
anything resembling a soft-phonon
mode, this line of development has
proved extremely useful and its influ-
ence is spreading. Structural transfor-
mations that involve discrete displace-
ments between rather widely separated
minima in the atomic single-particle
potentials are now being discussed in
terms of cooperative soft-tunneling ex-
citations.26 Certain magnetic struc-
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Table 1.

Material

BaTiO3

PbTiC-3
LiNbO3

LiTaO3

GeTe
Quartz
SrTiO3

KMnF3

LaAIO3

Gd2(MoO4)3

V3Si
Nb3Sn

Representative
Phase

Structure

cubic
perovskite
hexagonal
AI2O3

cubic-NaCI
rhombohedral
cubic
perovskite
perovskite
tetragonal
cubic

0-W

Examples of Displacive Structural
Transformations

Wave vector

0
0
0
0
0
0

Ik (111)
y2 ( i n )
y2 ( m i
y2 (no)
q—0
q - 0

Type

ferroelectric
ferroelectric
ferroelectric
ferroelectric
ferroelectric
non-polar
antiferroelectric
antiferroelectric
antiferroelectric
ferrielectric
elastic
(Cn-Ci2)-*0

To(K)

400
765

1460
890
670
850
105
185
810
430

21
46

tural rearrangements appear to involve
soft magnons.27 Within the next few
years we should begin to discover to
what extent the soft-mode concept is
useful in understanding Martensitic
transformations in metals28 and even
perhaps the phenomenon of melting.29

Finally, the connection between soft-
modes and superconductivity touched
upon earlier is being actively pursued
at the present time.30

Nearly all of the experimental studies we
have discussed here have been carried out
with our colleagues at the High Flux Beam
Reactor at Brookhaven National Laborato-
ry. We wish to especially acknowledge the
cooperation of B. Dorner, K. Gesi, J. Har-
ada. T. Riste, S. M. Shapiro and Y. Yam-
ada
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