Rabinowitch, together with Hyman H. Goldsmith, a physicist on the Project, to found the Bulletin of the Atomic Scientists in 1945. The Bulletin since that time has provided a constant reminder of the dangers of atomic power as well as the benefits that could follow upon its control and proper development. After World War II Rabinowitch gave most of his time to the pursuit of international controls for atomic energy. He was an active participant in the annual Pugwash conferences.

A native of St Petersburg, Russia, Rabinowitch studied chemistry at the University of St Petersburg and received his PhD from the University of Berlin in 1926. He later worked with Niels Bohr at the Institute of Theoretical Physics in Copenhagen before emigrating to the US in 1938 to become a research associate on a solar energy project at the Massachusetts Institute of Technology. He joined the Manhattan Project at the University of Chicago in 1942. In 1947 he went to the University of Illinois at Urbana as professor of botany and biophysics, where he remained until 1968, when he joined the State University of New York at Albany.

Preston Robinson

Preston Robinson, who designed the energy-storage capacitors that triggered the first atomic bombs, died in Williamstown, Massachusetts on 21 May at the age of 70.


From 1957 until his death Robinson was senior consultant to the Sprague Electric Company of North Adams, Massachusetts. He had been with the company since 1929. Prior to that time Robinson worked with Guggenheim Brothers Metallurgical Laboratories. He held a PhD in physical chemistry from the University of California at Berkeley (1925).

Bernard Smaller

Bernard Smaller, senior physicist at Argonne National Laboratory, died suddenly in Elmhurst, Illinois on 22 December 1972. He was 54 years old.

During his active scientific career Smaller made many important contributions to chemistry and physics through his original and innovative researches, using the techniques of nuclear and paramagnetic resonance. His development and use of a dual magnetic-field modulation technique to enhance spectral resolution opened the door to many new applications. His more recent innovations, making it possible to use EPR techniques for the study of short-lived irradiation-induced paramagnetic species, are recognized as very important pioneering research. His EPR observations of the hydrated electron and of the hydrogen atom in aqueous systems, which exist for short times after bursts of ionizing radiation, will stand as outstanding achievements for years to come.

Smaller's professional interests were broad, and his researches were carried out on such varied substances as glasses, ice, graphite, ionic crystals, organic compounds, bacterial spores, plant pigments, yeast cells, triplet states of phosphors, and aqueous solutions of organic compounds, including DNA bases. It was clear that an early interest in biophysics was a pervading thread throughout his professional life.

Smaller received his education at the University of Chicago and was granted the PhD there in 1951. He was a member of the staff of the chemistry division and more recently of the solidstate science division at Argonne from 1946 until his death.

O. C. SIMPSON, DIRECTOR Solid-State Science Division Argonne National Laboratory

George T. Senseney

George T. Senseney, an architect and physicist, died on 23 April. He was 66 years old.

In 1954 Senseney was involved in the development and installation of the United States' first nuclear explosion monitoring and detection devices on Guam. He also worked with laserbeam research and projects involving telemetry for the first US space vehicles. A graduate of Washington University, Senseney was supervisor of manufacturing and engineering for the Perkin-Alma Company of South Norwalk, Connecticut, before his retirement in 1971.

NEW CRYOGENIC Temperature

MODEL DTC-500

with direct temperature readout from the control sensor and test specimen sensor.

Control Range: 1 to 400K

Sensitivity: .001K from 1 to 25K, .01K

from 25 to 400K

Temp. Readout Accuracy 0.1K or better Sensors: TG-100 GaAs Diodes or DT-500

Silicon Diodes

Heater Input: 10-3 to 10 watts Current Ranges: 10 mA, 100 mA, and

1 Afs

Remote set point control capability

MODEL CSC-400

Developed specifically for use with the Corning Glass Works developed Capacitance Cryogenic Sensor Model CS-400.

Control Range: (1K to) 60K Sensitivity: ± 2 millikelvin Auto and Manual Reset

All solid state

Open loop temperature readout with a calibrated sensor Heater Output: 10-3 to 10 watts, 0-10 volts, 0-1 amp with 10 ohm heater load

ALSO AVAILABLE:

Full line of Ga As diode and Silicon diode Temperature Sensors, Capacitance Temperature Sensors, Cryogenic Liquid Level Sensors and Instruments, Cryogenic Cables, Calibration Service, etc.

For further information write or call: TELEPHONE 716-992-3411

Circle No. 44 on Reader Service Card