rized in a single formula, and the quantitative effects of this formula on transport coefficients are calculated. A third example is the article by A. H. Kritz, G. V. Ramanathan, and G. Sandri, in which the defects of the usual Bogoliubov treatment of the two-body correlation function are convincingly demonstrated and amended—without recourse to three body effects. Of course not all of this material is new, and one suspects that much of what is new will later be published elsewhere. But one also suspects that, misprints aside, many of the articles in Kinetic Equations appear in a uniquely intelligible form.

This is an interesting and readable

RICHARD HAZELTIN University of Texas Austin

Tunneling in Solids

C. B. Duke 353 pp. Academic, New York, 1969. \$16.00

This book deals with the process known as the tunnel effect whereby electrons are transferred through ultrathin insulating films. This ubiquitous effect has been of great interest to solid-state physicists from a wide range of experimental and theoretical viewpoints, and it ranges from the study of field emission into a vacuum to the semiconductor tunnel diode invented by Leo Esaki. It also includes the many-faceted superconducting tunnel effects that flowed from the pioneering efforts of Ivar Giaever. C. B. Duke has attempted to embrace the major aspects of this interesting field in a single volume. I believe he has achieved a high degree of success in his endeavor.

A major goal of the book was to serve as a source for a unifying view of this rather diverse field. One of the key problems the author faced was the establishing of criteria for the critical examination of the literature in this field. Somewhat arbitrary decisions are obviously required to accomplish this, but I tend to agree with his handling of the problem. In any case he was able to make tractable his task of organizing the subject matter and this has yielded an excellent bibliography of the experimental and theoretical papers in tunneling.

The book treats the subject with sufficient breadth so that it will be useful to physicists with varying theoretical and experimental background. One can begin to discuss tunneling using the idealized models of potential bar-

AVCO Now Offers

A Compact Tunable Dye Laser for less than \$8,000

NEW Dial-a-Line® Model 3000

- N₂ LASER PUMPING SOURCE INCLUDED AND ACCESSIBLE
 - TUNABLE 360 670 NM NANOSECOND PULSES
- 1 100 PULSE/SEC REP RATES
 KILOWATTS OF POWER
 COMPACT TABLE-TOP UNIT

Call Dick Neal or Dick Ober for Details

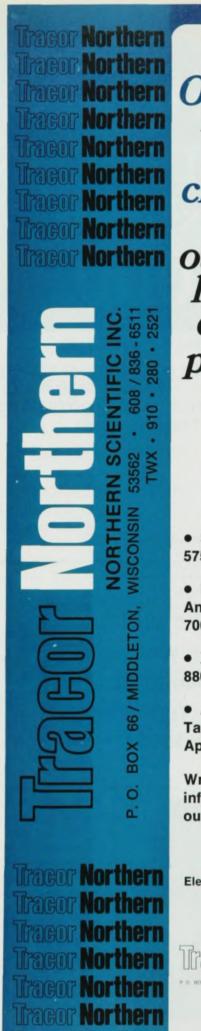
MAVCO EVERETT RESEARCH LABORATORY, INC.

2385 REVERE BEACH PARKWAY · EVERETT, MASSACHUSETTS 02149
TELEPHONE 617-389-3000 TWX 710-348-0470

Circle No. 33 on Reader Service Card

Magnetic shields for your photomultiplier tubes...right off the shelf!

We stock the world's largest line of photomultiplier tube shields. These prefabricated magnetic tube shields cover over 90% of currently manufactured photomultiplier tubes.


The Co-Netic material used to construct these shields is not significantly affected by shock or vibration. The shields have minimum retentivity, hence, they do not require periodic reannealing. When

grounded, they effectively shield photomultiplier tubes from electrostatic as well as magnetic fields over a wide range of field intensity.

Information on standard or highly custom engineered tube shields may be obtained by checking the reader service

number or contacting MAGNETIC SHIELD DIVISION, Perfection Mica Company, 740 Thomas Drive, Bensenville, Illinois 60106, (312) 766-7800.

Ask for catalog sheet PM-2.

Our name's been changed...

our high quality products haven't

- Signal Averagers 575, 570, 560
- Pulse Height Analyzers700, 900-I, 900-IA, 633
- X-ray Fluorescence 880, 750
- Accessories
 Tailored to Your
 Application

Write or call for more information on any of our instruments.

Tomorrow's Electronic Instrumentation Today

PO BOX 68/MIDDLETON WISCONSIN 53562 - 608 (48) 687

Circle No. 35 on Reader Service Card

riers that one finds in basic quantum mechanics texts and Duke uses this as the starting point for the understanding of a variety of experiments involving elastic tunneling with non-superconducting electrode materials. Various modifications of barrier potentials and density of states are discussed and the relation to experiment is analyzed. This area comes under Duke's heading of the independent electron theory of tunneling. The other major area treated involves the more complex aspects of tunneling, superconductivity. which include inelastic effects, magnetic interactions and self-energy effects. The treatment is quite extensive and contains detailed discussions of the more advanced theoretical approaches. Duke's own contribution to the advanced theoretical structure is quite well known so that it is appropriate that this area be emphasized.

This volume is a supplement to the Solid State Physics series that is so well known to solid-state physicists and it is a timely and valuable addition to the series. Those wishing to know more about the field will find it to be an excellent central source. Research workers in the field of electron tunneling should have this book at hand.

JOHN LAMBE Ford Motor Company Dearborn, Michigan

Laser Interaction and Related Plasma Phenomena, Vol. 2

H. J. Schwarz, H. Hora, eds.583 pp. Plenum Press, New York,1972. \$27.50

This volume represents the proceedings of the Second Workshop, held at Rensselaer Polytechnic Institute during the early autumn of 1971. It is composed of the unedited papers given at that colloquium covering such subjects as high-density lasers, laser-induced gas breakdown, plasma diagnostics and special interaction processes, laser-produced plasmas interacting with gases in magnetic fields, the theories of highintensity laser interaction with plasmas and fusion neutrons from laserirradiated high-density plasmas. In all there are 43 papers reproduced in their original typescript form with a brief summary of the discussions after each major section of the workshop.

The First Workshop, held under the same auspices in 1969 and also edited by Helmut Schwarz, who is a professor of physics, and Heinrich Hora, adjunct associate professor of physics, at Rensselaer Polytechnic Institute, provides