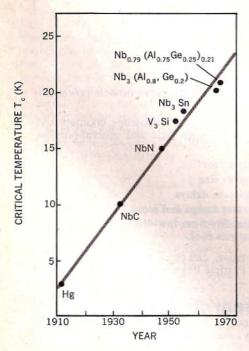
letters


These powerful agencies are the ones responsible for the harmful uses of science; they are also the main sources of financial support for science. If physicists were seriously to shun the harmful avenues of scientific work, they would assuredly incur severe economic hardship for themselves. I do not expect physicists to volunteer for martyrdom; but I do think that the truth in this situation should be openly acknowledged.

Thus, the APS membership may be expected to vote down the proposed amendment because the majority is fundamentally dedicated to "the enhancement of the quality of life" for themselves first, and concern for "the welfare of mankind" is secondary.

> CHARLES SCHWARTZ University of California Berkeley

Superconducting progress

The curve below provides an amusing perspective on current efforts to find superconducting materials with higher critical temperatures. A survey of researchers would probably yield the opinion that this progress is rapidly saturating. In point of fact, however, the accompanying curve suggests that the progress made since the discovery of superconductivity has been more or less constant. This is a curve of the maximum known critical temperature plotted throughout the years since the discovery of superconductivity. Data were obtained by starting with the most recent data point and working backwards using references in the cor-

Progress in attaining higher maximum critical temperatures since the discovery of superconductivity.

responding article. There is some "fuzziness" in the curve around the early 1940's when data were slow in coming out of Germany, where some of the research was being done.

Notice that the recent materials are becoming increasingly more sophisticated, indicating that it is perhaps becoming more difficult to discover them. Although linear extrapolations are always dangerous the curve suggests 2140 and 2840 AD as dates for achieving superconductivity at 77 and 300 K, respectively.

> BRUCE W. FRIDAY Rensselaer Polytechnic Institute Troy, New York

Large-volume problem

Clarence Zener's article "Solar Sea Power" (January, page 48) was interesting both in what it said and in what was omitted. It is quite likely that most physicists have at one time or another considered the vast amount of energy stored in the thermal gradients that exist in the oceans or in other geophysical systems. One always concludes, as Zener illustrates, that the potentially available energy is sufficient to satisfy the most inflated estimate of our power needs. Even at the low conversion efficiencies that result from small temperature differences, the total amount of power that may be extracted is huge.

The major problem that arises when one contemplates extraction of power from a source such as the ocean's thermal gradient is not in designing an engine to operate across small temperature differences, but rather in finding some way to make thermal contact with the required enormous volume of each thermal reservoir. This is very important, because the volume density of available power is small; it is the tremendous volume of the ocean that results in the great size of this resource. Hence, one is forced to gather water from many square miles of ocean surface, and the generator's effluent must similarly be distributed over many square miles of ocean area. This input/output process must be accomplished in such a way that the effluent does not return to the intake before it has been heated sufficiently by solar radiation.

Unless the generator is situated in a natural current, it is difficult to see how the efflux will be sufficiently isolated from the intake. Putting it another way, it would appear as if a natural, strong current is needed to bring the required volume of water into thermal contact with the generator. The artist's impression on page 49 shows a vertical structure that may not utilize an ocean volume much greater than the cube of its length (or an order of magnitude larger) unless some undis-

Elscint's Remarkable Discriminator

- VIRTUALLY INDEPENDENT OF RISE TIME
- ±1.4 NANOSECOND WALK IN 100:1 DYNAMIC RANGE, Ge(Li)

Now, walk-free signals using any kind of detector without amplifiers or timing filters! And if you need even less walk, call ELSCINT . . . we have the technique.

That's typical of ELSCINT's unrivaled line of nuclear instruments.

FREE 16-PAGE "METHODS OF NUCLEAR INSTRUMENTATION"

ELSCINT LTD. Exclusive USA Sales & Service:

PRINCETON APPLIED RESEARCH CORP. P.O. Box 2565 Princeton, New Jersey 08540 Phone: (609) 452-2111

Circle No. 10 on Reader Service Card

The new standards in discriminators

Model 621L Quad Variable Threshold Discriminator is an extremely versatile instrument with performance characteristics especially chosen for large-scale general-purpose use.

- Continuously variable threshold from —30 mV to —600 mV. Low minimum threshold permits proper back-termination of phototubes or allows use of small photomultipliers without the necessity for a separate amplifier.
- Fiddle-free threshold and width controls are screwdriver-adjustable. Recessed behind the front panel, they cannot be changed inadvertently during the course of an experiment.
- * Continuously variable output width controls from 5 ns to 1 μs is the widest continuous range offered by any discriminator in its class.
- 100 MHz operation: The double-pulse resolution of 8 ns provides ample speed for most large-scale generalpurpose applications.
- High fan-out: Each channel offers six NIM outputs (5 normal; 1 complement).
- No multiple-pulsing: One, and only one, output pulse is produced regardless of input duration or amplitude.
- Low time slewing: <1 ns.</p>
- Deadtimeless operation updates the output pulse to reflect the most recent input signal.
- Front-panel monitor point allows direct calibration of threshold without removing input cables.
- \$ \$174 per channel in unit quantities.

MODEL 621L QUAD 1 DISCRIMINATOR (e) 0 0

Model 620L 8-Channel Discriminator contains eight identical pulse amplitude discriminators designed for use with hodoscope and similar large-scale applications where only moderate flexibility is required.

- Low input threshold of -30 mV provides compatibility with lower gain hodoscope counters or with signals which may have been degraded by long cable delays.
- Excellent threshold stability of <50 μV/°C preserves threshold value over varying operating environment.
- Common threshold control adjusts all thresholds simultaneously from -30 mV to -1 volt.
- # High fan-out of three -800 mV signals
- Output width is variable from 5 to 30 ns and is independent of input duration, amplitude, and rate; no need for width cables.
- Low time slewing provides accurate timing signals regardless of the distribution of input amplitudes.
- Short 8 ns input-output delay minimizes need for long compensating delay cables and provides prompt system outputs.
- Front-panel monitor point allows direct calibration of threshold without removing input cables.
- \$ \$110 per channel in unit quantities.

If you have designed fast logic systems, you have seen optimum system designs scrapped because of inadequate discriminator fan-out. Either you've had to compromise the over-all logic design to accommodate the fan-out limitations, or you have had to increase and unbalance the logic delays through insertion of fan-out modules in the system.

We do not think this is how it should be . . . and we have done something about it. Two new LRS discriminators attack the fan-out problem directly. The Model 620L, the most compact and economical discriminator available, offers three independent outputs per channel. The new Model 621L, based upon the proven design of the world's most widely used discriminator, the LRS Model 321B/50, provides six outputs per channel, 2 dual bridged NIM outputs, one 16 mA normal, and one 16 mA complement. This rather phenomenal fan-out capability of LRS discriminators is achieved through a simple

new output stage design which minimizes module power dissipation.

With the Model 620L for your hodoscope counters and the Model 621L for fast trigger logic and general-purpose use, you will enjoy:

- # Lower system cost
- Smaller system size
- Shorter, uniform delays
- Simpler system design and setup
- Higher reliability from low-dissipation circuits that run cool.

For further information, call or write Alan Michalowski, Sales Manager, LRS Particle Physics Division, or your local LRS Sales Office.

LeCroy Research Systems Corp.

126 NORTH ROUTE 303 WEST NYACK, N. Y. 10994 Phone: 914/358-7900 • TWX: 710-575-2629 • Cable: LERESCO

LeCroy Research Systems SA

81, Avenue Louis Casai • 1216 Cointrin-Geneva • Switzerland Phone: (022) 34 39 23 Telex: 28230

SALES OFFICES THROUGHOUT THE FREE WORLD

etters

cussed provision is made for properly noving the water in the vicinity of the power plant. Even if the heat exhangers and internal components are capable of producing large output power, an unfortunate eddy-current nay be set up between the efflux and ntake, resulting in a low output equipibrium condition.

Of course, my comments are primarly intuitive, since I have not analyzed he hydrodynamics and thermodynamcs of the situation. It is possible that such a detailed analysis would predict some sort of stable flow that could vercome the eddy-current tendency and could confine efflux and intake lows to the appropriate strata. If so, his result would be of immense imporance and should have been mentioned n the article. I have little doubt that f the "large-volume problem" were onceptually solved, then funds would apidly become available for research, levelopment, test and engineering in his area.

In closing, I would like to point out a eal need for physicists, not to design pollers or heat exchangers, but to unlerstand and solve the problems of vorking with very large volumes. In nost cases where geophysical power ources are currently used (for example, hydroelectric or tidal electric genrators) the large volumes of material re moved through the apparatus by vature. What is needed to utilize ome of the other natural power ources is a means for interacting with eservoirs that are not so cooperative.

Howard S. Marsh Nashua, N.H.

THE AUTHOR COMMENTS: Howard darsh is quite right in calling attention to the problem of mixing of efflux and intake. As he has suggested, this roblem may be resolved by taking adantage of naturally occurring ocean urrents. If L is the distance between he boiler intake and efflux, D the dimeter of the condenser, and V the vecity of the intake and efflux, the contion for negligible mixing is

$$(D/L)^2 < (V_{\text{ocean current}}/V)$$

Ve have considered the Caribbean as a lost suitable site for solar sea power lants. Here the currents are suffiently strong, greater than ½ ft/sec, to attisfy the above condition up to the otimum size plant we have envioned, namely 200 000 kW output.

Because of ecological reasons, the sld efflux of the condenser should not ix with the warm layer above the termocline. This cold efflux must erefore be discharged into a layer ship insiderably below the top of the therecal ocline. The density stratification of

the thermocline will then prevent the unwanted mixing.

CLARENCE ZENER Carnegie-Mellon University Pittsburgh, Pa.

Utah effect obituary

According to your report (November, page 20), Jack Keuffel and his collaborators have after nearly five years finally given up their discovery of the so-called W-particle. Estimates of the rest mass (≈ 45 GeV) and of the production cross section ($\approx 10^{-28}$ cm²) of Utah's W-particle were made from the data in which one important point was suppressed (the data point around 5.5×10^5 cm² of ground depth in figure 2a).¹ Inconsistency of this point with other Utah data was previously discussed,² and is clearly shown in figure 1 of the latest Utah paper.³.

"Farewell to Utah's W-Particle" is not necessarily the death of intermediate vector boson theory and of the 37.3-GeV boson, but should simply be regarded as an indication that the production cross section of this particle is not as large as previously claimed.1 Detection of this particle should be pursued further, because the existence of a 37.3-GeV boson, if it is proved, has a profound significance in the field of weak interactions.4 The detection, however, will not be by time-consuming and inaccurate underground experiments but by far more accurate detectors, hopefully with the help of accelerators and of intersecting storage rings.

References

- H. E. Bergeson, G. L. Boingbroke, G. Carlson, D. E. Groom, J. W. Keuffel, J. L. Morrison, J. L. Osborne, Phys. Rev. Lett. 27, 160, (1971).
- K. Maeda, Proc. 11th Conf. Cosmic Rays, August 1969 (paper MU-49), NASA Report X-641-69-491 (1970).
- H. E. Bergeson and others, Paper submitted to 16th Conference on High Energy Physics, September 1972.
- J. Schechter, Y. Ueda, Phys. Rev. D2, 736 (1970); T. D. Lee, Phys. Rev. Lett. 26, 801 (1971); S. Weinberg, Phys. Rev. Lett. 27, 1688 (1971); K. Maeda (to be published in Nuovo Cimente); see also PHYSICS TODAY, April 1972, page 17.

KAICHI MAEDA Goddard Space Flight Center Greenbelt, Md.

Mothers with PhD's

In commenting on my letter (June, page 15) in which I advocate the establishment of permanent part-time faculty positions at colleges and universities, M. Rothenberg takes me to task for having a sexist bias in terminology (October, page 67), that is, for referring to physicists as "he" or "him" and speaking of the physicist's "wife" rather than "spouse." He suggests that

NEW CRYOGENIC Temperature

CONTROLLERS

MODEL DTC-500

with direct temperature readout from the control sensor and test specimen sensor.

WITH:

Control Range: 1 to 400K Sensitivity: .001K from 1 to 25K, .01K from 25 to 400K

Temp. Readout Accuracy: 0.1K or better Sensors: TG-100 GaAs Diodes or DT-500

Silicon Diodes Heater Input: 10⁻³ to 10 watts Current Ranges: 10 mA, 100 mA, and 1 A f. s.

Remote set point control capability

MODEL CSC-400

Developed specifically for use with the Corning Glass Works developed Capacitance Cryogenic Sensor Model C S-400.

Control Range: (1K to) 60K Sensitivity: ± 2 millikelvin Auto and Manual Reset

All solid state

Open loop temperature readout with a calibrated sensor Heater Output: 10⁻³ to 10 watts, 0-10 volts, 0-1 amp with 10 ohm heater load

ALSO AVAILABLE:

Full line of Ga As diode and Silicon diode Temperature Sensors, Capacitance Temperature Sensors, Cryogenic Liquid Level Sensors and Instruments, Cryogenic Cables, Calibration Service, etc.

For further information write or call: TELEPHONE 716-992-3411

Circle No. 12 on Reader Service Card