we hear that

joined Brookhaven National Laboratory as a research associate. He subsequently was named associate chemist, chemist, and senior chemist. He was appointed deputy chairman of the chemistry department in 1968.

During his years at Brookhaven Hamilton was responsible for developing a group that was one of the foremost in the world in the applications of neutron diffraction techniques to the solution of important problems in chemistry and biology. His classic work on hydrogen-bonded systems has been of utmost importance to modern chemistry and biochemistry. At the time of his death he had nearly completed a systematic study of the precise molecular and crystal structures of the naturally occurring amino acids, the building blocks of proteins.

Hamilton's mathematical abilities were unusual. Though trained as a chemist, the first of his three books, Statistics in Physical Science (1964), is purely mathematical in content. It displays his unusual talents for making mathematics intelligible and usable for those less gifted than he. Concomitant with his mathematical abilities were his considerable program talents. During Hamilton's career at Brookhaven he wrote a number of computer programs that are in general use within the scientific community. He was instrumental in developing the computer-controlled diffractometer system at the High Flux Beam Reactor at Brookhaven, wherein several diffractometers are controlled by a time-sharing computer. At the time of his death Hamilton was actively engaged in the problems of remote computing and display, attempting to develop the Brookhaven computer as the center of a network that would serve the crystallographic community.

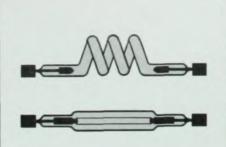
Hamilton was both a superb scientist and a superb administrator. Included in his many administrative contributions to crystallography were his presidency of the American Crystallographic Association in 1969 and his long-term position as co-editor of Acta Crystallographica. In 1969 he was local chairman for the Eighth General Assembly and Congress of the International Union of Crystallography held at SUNY, Stony Brook.

These basic facts do not provide a true measure of the important role that Hamilton served within the scientific community. He was ever enthusiastic and generous. He gave freely of his time to help others in their scientific work. His skills were always evident when difficult scientific problems arose in private discussions or at meetings. But more important than being a

highly esteemed colleague to those of his age and experience, he was a continual source of inspiration to aspiring young scientists, primarily because of his enthusiasm and his gentle nature. He was that rare type of individual who could communicate with young and old alike and infect them with his enthusiasm for work well done.

> JAMES A. IBERS Northwestern University

Howard Jerry Foster

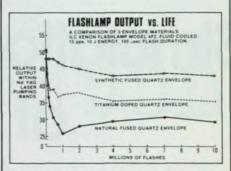

Howard Jerry Foster, chairman of the department of physics and mathematics at Alabama A&M University, died on 23 January 1973. At the time of his death Foster was on the advisory board of the Danforth Foundation, Trustee for the Roxbury Medical-Technical Institute of Boston, Massachusetts, and a member of the American Physical Society's Committee on Minorities in Physics.

Howard was a school "dropout." After serving in the Armed Forces, he returned to earning a living and then entered high school, earned some support as a gospel singer, and attended college at Fisk University, Nashville Tennessee, where he earned the BA (magna cum laude) and MS degrees (straight "A" average) in physics. In 1964 he received a PhD in physics from

FOSTER

the Catholic University of America, with special citation for outstanding academic performance. Prior to joining the staff at Alabama A&M University in 1965, Foster held a position as solid-state physicist in the Institute for Materials Research at the US National Bureau of Standards. He also held many consulting and part-time professorial positions, including among them

FLASHLAMPS


ILC high quality lamps are used everywhere: for laser pumping, office copiers, photochemistry, strobe systems, laboratory experiments, and many similar applications.

Longer Operating Lifetimes—customers report 3 to 10 times longer life in side-by-side comparisons.

Long Shelf Life—tests after 3 years show 100% reliability.

Best Lamp-to-Lamp Consistency—our stringent processing controls, high temperature seal design, and operating tests on every lamp give you predictable lamp performance each time.

1400 Standard Designs—plus our unique computerized design assistance let you obtain a lamp optimized for your requirements.



Linear, helical, point source, and coaxial lamps. Xenon, krypton, or metal vapors. Let us and our computer programs determine which lamp is best. If you use flashlamps or dc arc lamps, please call or write ILC Technology.

ILC Technology • Flashlamps • dc Arc Lamps • Electron Beam Guns • Ceramic to Metal Seals • Sapphire Windows • Trigger Transformers • Arc Lamp and e-Beam Gun Power Supplies

- ilc -	ILC Technology 164 Commercial Street Sunnyvale, California 94086 Phone (408) 738-2944
Please send info	ormation on
flashlamps dc arc lamps	s
Name	
Title	
Orgn.	
Dept.	
Address	

Circle No. 51 on Reader Service Card

Simulation in 1/100th the Time at 1/4th the Price.

That's just a fraction of our story. The new PACERTM computer systems by EAI can actually deliver price/performance ratios that run well over 100 times those of conventional digital computers. Whether the problem is simulation, optimization, control, design or data reduction.

The unique efficiency of PACER systems is due to many factors: First, they combine our new fourth-generation digital processor with three new high-speed parallel processors. New peripherals and software offer interactive graphics in a conversational mode of operation. So now scientists and engineers can achieve higher computational productivity and accuracy while tackling the complexities of multivariable problems in real time or even faster than real time.

The PACER systems simply deliver far more solutions per day or per dollar than any alternative systems.

Further, we help you zero in on optimum efficiency by offering three series of systems: PACER 500, PACER 600 and PACER 700. Each series offers three sets of options with a wide choice of peripherals. To let you choose a setup with capabilities matched almost precisely to the requirements of your problems or to your preference for input/output.

Yet there is never a need to feel straitjacketed. Because PACER systems are expandable. Almost indefinitely—including interconnection to your existing computers.

As for software, EAI can probably be of more help

to you than anybody else in the world. Our library of compatible engineering and scientific software is the most generally useful ever assembled, and we have over 5,000 case histories of applications to prove it.

For details on our whole PACER story, please write or call today.

Electronic Associates, Inc. 185 Monmouth Parkway West Long Branch, New Jersey 07764 (210) 229-1100

Circle No. 52 on Reader Service Card

positions as consultants both to NASA and the Atomic Energy Commission; a visiting professorship at the Massachusetts Institute of Technology (fall, 1970), and visiting lectureships at both the University of Alabama in Huntsville and the University of Georgia.

Foster's past work activity included teaching at the undergraduate and graduate levels in physics and mathematics; consulting in environmental sciences; work in atomic energy; environmental control (space program); missile vibration shielding; prospecting for mineral resources from outer space; defense against sophisticated missile attack (Safeguard); laboratory director for high-temperature studies of missile nose-cone materials and nuclear fuels; electron microscopy and diffraction; thin films and crystal growth, and theoretical and experimental studies of Fermi surfaces in metals.

Foster's recent work activity included quantum theoretical and experimental studies of Fermi surfaces and electronic properties of metals; work in crystal growth and purification of metals and alloys; consulting in some of these areas; teaching and service as chairman of the department of physics and mathematics at Alabama A&M University, where he supervised 17 full-time faculty and staff members and was responsible for curriculum revision and development in physics and mathematics. He was actively engaged in several local (state) and national organizations that are responsible for the future direction of science and general education at the secondary level and in higher education in the US and Canada.

The tremendous contribution to physics, to science, research, technology, design and invention and to humanity deserves emphasis here—to his native state of Alabama, to his country, to all people-contributions through his knowledge, his creativity, and his dedication. He had a unique ability to knit together diverse groups of peoplephysicist and layman, black and white, northerner and southerner. This talent was in large part simply a measure of his ability to communicate effectively, whether speaking with his scientific peers on shrinkage of the Fermi surface or with his fellow blacks on the impact of science training on black pride. It is a talent that did much to enhance the prestige of physicists among various minority, ethnic and geographical groups. Foster exemplified and demonstrated the possibility of implementing the great American dream.

WARREN E. HENRY
Howard University

AVCO Now Offers

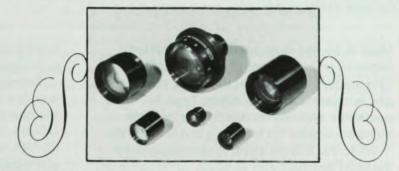
A Compact Tunable Dye Laser for less than \$8,000

NEW Dial-a-Line® Model 3000

- N₂ LASER PUMPING SOURCE INCLUDED AND ACCESSIBLE
 - TUNABLE 360 670 NM NANOSECOND PULSES
- 1 100 PULSE/SEC REP RATES KILOWATTS OF POWER
 COMPACT TABLE-TOP UNIT

Call Dick Neal or Dick Ober for Details

ANAVCO EVERETT RESEARCH LABORATORY, INC.


2385 REVERE BEACH PARKWAY EVERETT, MASSACHUSETTS 02149

TELEPHONE 617-389 3000

TWX 710-348-0470

Circle No. 53 on Reader Service Card

問題問題

Whether your optical need is for a 50 mm f:0.75 or a 33 in. f:4.5 photocopier lens, FJW INDUSTRIES is the place to go. No language barrier, no dollar devaluation problems when FJW makes your lenses in our modern, efficient Mt. Prospect, III. facility. We manufacture all types of optical products from single element to multi-lens systems to your design or ours in quantities of just a few to thousands.

Call or write us today

INDUSTRIES

215 East Prospect Avenue Mount Prospect, III 60056 Phone 312/259-8100