cussion. It is, of course, impossible that each topic be treated in any great detail, and there are some ludicrously skimpy discussions. The notion of a partially conserved axial-vector current (PCAC) is covered in only eight lines—in which a trained eye might or might not be able to find some hint of the consequent low-energy theorems for pion production.

It may be that topics such as PCAC simply defy explanation at an elementary level. In any case it is still fair to point out that Perkin's presentation does not go far beyond standard approaches in bringing advanced topics such as this within the reach of the beginning student. A mere mention of these topics is simply inadequate.

In summary, the book is one that merits the attention of anyone teaching an introductory course in high-energy physics. As a set of lectures, the book is noteworthy for its range and clarity, but as a book it lacks that spark of brilliance that distinguishes insight from orderliness.

ROBERT CARLITZ Enrico Fermi Institute University of Chicago Chicago, Ill.

The Thermodynamics of Simple Materials with Fading Memory

William Alan Day 134 pp. Springer-Verlag, New York, 1972. \$13.70

When we consider thermodynamics as a field theory of density, deformation and temperature, we must find out what the field equations are. course, they are based on the equations of balance of mass, momentum and energy, but these lead to field equations only when supplemented by constitutive equations that relate the constitutive quantities stress, heat flux and internal energy to the thermodynamic fields in a materially dependent manner. Therefore, the problem of finding the field equations for a given material becomes the problem of determining its constitutive relations. Traditionally, with few exceptions, only those materials have been considered whose constitutive quantities depend on the present values of the field and perhaps on their first gradients and time derivatives; exceptions include the classical theories of linear viscoelasticity with their monotonically decreasing relaxation functions. These theories were, in fact, describing materials with fading memory and their constitutive relations were functional relations of a simple kind.

Now, in the last decade or two, thermodynamicists have studied functional constitutive relations of greater generality or, more specifically, they have studied materials whose stress, heat flux and internal energy are dependent on the histories of deformation, temperature and temperature gradient. The form of the constitutive relations is subject to certain restrictions that can be derived from physical principles that are supposed to hold for a large class of materials. Such restricting principles are the entropy principle and the principle of fading memory, and to the formulation and evaluation of both Alan Day has made important contributions. It is therefore very appropriate that he should present a first comprehensive account of this recent field.

Day's book on The Thermodynamics of Simple Materials with Fading Memory essentially contains two parts; in the first one the author presents mostly his own ideas about thermodynamics and in the second part he describes a theory that goes back to Bernard Coleman's work. The basic inequality and the fading-memory principle are different in the two parts, but the resulting restrictions on constitutive relations are similar for many materials.

At the outset Day proposes an inequality that he assumes to hold in cyclic processes. For materials whose stress and internal energy are independent of the temperature gradient, this inequality states that the time integral over the reduced heat supplied to the body is non-positive in a cyclic process or, in Day's words: The Clausius integral is non-positive. The principle of fading memory is then stated as an assumption about the additivity of Clausius integrals in a composite process, which, roughly speaking, is a series of processes with intervals during which the body is given time to "for-For the bodies under his consideration Day succeeds in proving that an entropy can be defined both in equilibrium and away from equilibrium, and he shows that this entropy is given by a constitutive functional. Using these general results Day derives restrictions for the constitutive functionals of thermoelastic bodies and of some viscoelastic bodies.

Entropy is no problem in the second part of the book; its existence and specific forms for its flux and supply are assumed, and the Clausius-Duhem inequality is postulated to hold for all processes. This inequality serves to derive restrictions on the constitutive functionals, and the principle of fading memory enters the theory as an assumption of continuity of the functionals with respect to a norm that characterizes histories in such a manner that their differences in the distant past become unimportant.

New Books from North-Holland

Fast Ion Transport in Solids, Solid State Batteries and Devices

Proceedings of the NATO Sponsored Advanced Study Institute, Belgirate, Italy, September 5–15, 1972

Edited by W. VAN GOOL, University of Utrecht, The Netherlands

The Proceedings of the 10-day Summerschool on Fast ion Transport in solids, solid state batteries and devices contain a thorough discussion of the diffusionphenomena in solids. The present state of the theory of anomalously fast diffusion (super ionic conductors) is discussed. Both research and teaching contributions deal with known and new solid electrolyte materials and battery systems.

Teaching contributions by: A Ascoli, J. W. Geus, W. van Gool, Y. Haven, L. Heyne, J. M. Honig, R. A. Huggins, M. Jozefowicz, R. R. Kikuchi, A. D. Le Claire, C. C. Liang, A. Lundén, M. E. Milberg, S. P. Mitoff, M. O'Keeffe, B. B. Owens, S. Pizzini, D. O. Raleigh, H. Richert, R. S. Roth, B. C. H. Steele, J. B. Wagner, Jr., I. Wynn Jones. 1973, approx. 700 pp., in prep.

Fundamental Interactions and the Nucleus

By R. J. BLIN-STOYLE, University of Sussex, England

This book provides a fairly detailed, upto-date account of the different aspects of the fundamental interactions of elementary particles.

Contents: Fundamental interactions and the nucleus. Nuclear β -decay. The polar vector current in β -decay. The axial vector current in β -decay. Unusual currents and interactions in β -decay. The lepton current and the neutrino. μ -capture. The weak internucleon potential. The effect of a parity violating potential in low energy nuclear physics processes. Time reversal non-invariance in nuclear reactions and electromagnetic transitions. Electromagnetic and charge dependent interactions. Strong interactions in the nucleus. Appendices. 1973 approx. 360 pp., \$19.50

Distributed in the United States and Canada by

American Elsevier Publishing Company, Inc.

52 Vanderbilt Avenue New York, N.Y. 10017

Circle No. 30 on Reader Service Card

1. APPLIED NONLINEAR **OPTICS**

By FRITS ZERNIKE. Perkin-Elmer Corporation, and JOHN E. MIDWINTER, Post Office Research Department, Sutfolk, England

A volume in the Wiley Series in Pure and Applied Optics, edited by Stanley S. Ballard

Written especially for physicists and engineers interested in device applications made possible by the development of nonlinear

optics over the past ten years, this book provides a theoretical introduction to the subject in the simplest mathematical terms. Showing how real laboratory situations can depart from ideal theory, the authors describe the types of problems encountered in the construction of nonlinear devices, and provide a detailed discussion of the characteristics, practical problems, and selection of nonlinear materials. 224 pages (approx.) \$14.95

2. PERTURBATION METHODS

By ALI HASAN NAYFEH, Virginia Polytechnic Institute and State University, Blacksburg

A detailed and up-to-date treatment, Perturbation Methods presents a unified account of commonly used perturbation techniques from the fields of physics, engineering, and applied mathematics-including discussions of their similarities, differences, advantages, and limitations. Containing more than one hundred exercises of varying difficulty, and the most extensive bibliography available in the field, it will serve as an effective text and as a valuable professional reference.

1973

425 pages

\$17.95

3. THERMOCOUPLE TEMPERATURE MEASUREMENT

By P. A. KINZIE, R. David Moore & Company

The only up-to-date, thorough treatment of the subject, Thermocouple Temperature Measurement presents a comprehensive summary of data and literature references for approximately 300 types of thermocouples. While the author encourages the selection of unusual materials for unusual problems, he also discusses commonly used thermocouples for those with more conventional requirements. Among the topics considered are thermocouples of noble-metal composition, thermocouples of mixed noble and base metals, base-metal thermocouples for low and moderate temperatures, and base-metal and nonmetal thermocouples for moderate and high temperatures.

278 pages

\$14.95

4. ACOUSTIC FIELDS AND WAVES IN SOLIDS

Volumes I and II

By B. A. AULD, Stanford University

Organized along the lines of currently used graduate-level electromagnetic theory texts, these volumes provide step-by-step descriptions of the theory of mechanical waves and vibrations in solids. Extensive use is made of specific examples, both to illustrate concepts and to demonstrate problemsolving methods. The books feature universal curves that can be used to qualitatively predict the directional properties of acoustic propagation in single crystal materials, numerous tables, and a set of exercises for the student at the end of each chapter.

4a. Volume 1: 1973

432 pages (approx.)

\$24.95

4b. Volume II: 1973

432 pages (approx.)

\$24.95

4c. 2-Volume Set: \$45.00

5. MOLECULAR WAVE **FUNCTIONS AND PROPERTIES:**

Tabulated from SCF Calculations in a Gaussian Basis Set By LAWRENCE C. SNYDER, Bell Telephone Laboratories, Inc., and HAROLD BASCH, Bar Ilan University, Israel

This is the first book to present SCF molecular wave functions and derived properties computed in a uniform basis set for a large number of linear and non-linear molecules. Presented in one book, and in tabular form for convenient comparison and interpretation, these largely unpublished results will provide new insights into the electronic structure and properties of molecules when viewed together by the wider scientific community.

432 pages

\$14.95

6. LOW ENERGY ELECTRON COLLISIONS IN GASES:

Swarm and Plasma Methods Applied to Their Study By ALDO L. GILARDINI, Selenia, S.p.A., and University of Rome, Italy

A volume in the Wiley Series in Plasma Physics, edited by Sanborn C. Brown

This volume collects a large amount of scattered information on the experimental determinations of those physical parameters that characterize transformationless, low energy electron collisions in gases. The information, derived from measurements of electron swarm and plasma transport quantities, is thoroughly reviewed and presented in a systematic and easily accessible fashion.

480 pages (approx.)

\$24.95

Available at your bookstore or from Dept. 092-A 1214-WI

WILEY-INTERSCIENCE

a division of JOHN WILEY & SONS, Inc., 605 Third Avenue, New York, N.Y. 10016 In Canada: 22 Worcester Road, Rexdale, Ontario

Prices subject to change without notice.

WIL	EY	-IN	ITE	RS	CI	В	N	CE
-----	----	-----	-----	----	----	---	---	----

Dept. 092-A 1214-WI, 605 Third Avenue, New York, N.Y. 10016

Please send me the book(s) whose number(s) I have circled: 1 2 3 4a 4b 4c

☐ My check (money order) for \$____ _is enclosed. ☐ Please bill me. (Restricted to the continental United States.)

Name.

Company_

Address_ State

Zip_

Prices subject to change without notice.

Please add state and local taxes where applicable.

The book concludes with a treatment of a linear viscoelastic material and lists some thermodynamic restrictions for the relaxation function.

Some of the proofs presented by Day are amazing in their ingenuity, and, although the book deals with a complex subject, it is so well written that every single argument can easily be followed by the careful reader.

The very fact that Day chose to present two different approaches to a thermodynamic constitutive theory makes it clear that that theory is not complete at the present day. And indeed, while the simple equations of state of classical thermodynamics have been replaced by functional relations of sophisticated generality, the second law in the form of various inequalities sticks out as what an archeologist would call a "typological relic" from the thermostatics of Clausius; but perhaps I am prejudiced on that subject, since in my research I have made it my concern to investigate the consequences of more general entropy inequalities.

INGO MÜLLER Johns Hopkins University Baltimore, Md.

Introduction to Newton's 'Principia'

I. Bernard Cohen 380 pp. Harvard U.P., Cambridge, Mass., 1971. \$30.00

In the tribal folklore of physics, no saint has a bigger halo than Newton's. As it should be with true believers, physicists are loth to come to grips with the sweat and sin, the deviations from the path to Olympus, of their tutelary Herakles. Thus it is no surprise that while any interested person who seeks Augustine, Shakespeare, or Goethe need only go to any university library to find a complete, precise, and abundantly annotated edition containing every single word or figure set on paper by those authors and today preserved, until recently the scholar who would study the works of Newton was compelled to rely largely on the tiny fraction of his work that had been published, a fraction selected by a mixture of prejudice and caprice. Even now, those to whom Newton's native language in science, which was Latin, is inaccessible can consult his masterpiece, the Principia, only through a translation notorious for its blunders at critical passages.

This strange contrast results from the natural preference of the masses and the "educated" for great entertainers over great enlighteners. The ill wind of abundant cheap publication, however, has blown good to Newtonian scholars by making possible the publication, now in progress, of The Mathematical Papers of Isaac Newton, Cambridge U. P., superbly edited by D. T. Whiteside, the four volumes going through 1684 now standing in print. In addition there are now four volumes of the Correspondence of Isaac Newton, through 1709, variously and irregularly edited by a committee, so that the responsibility for random spots of ignorance or national prejudice could be made anonymous. eight massive volumes, difficult to penetrate, form today the best introduction for the serious student of Newton's thought.

The introduction presently under review is of a different kind. Of course, any introduction is made, not passively, but to someone. The quickest inspection of the work shows that I. Bernard Cohen makes no attempt to speak to any who would follow the brilliantly inventive, perplexing, lacunary, often fallacious and sometimes even contradictory mixture of guesswork and icy mathematics in Newton's treatise. Indeed, the content is mentioned only here and there, in passing.

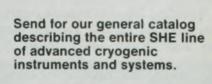
Rather, this introduction, as the appearance of the late Alexander Koyre's name on the flyleaf might suggest, is a contribution to the "new" history of science: the story of the circumstances, rather than the content, of scientific discovery. As such, it is a work of great erudition. The reader is led through the preliminary manuscripts, the writing and publishing of the first text, and all the revisions, both those that did appear in the second and third editions and those that were withheld.

In the task Cohen set himself, he has succeeded perfectly, and the present volume will surely stand henceforth as the definitive textual criticism of the Principia.

> C. TRUESDELL Johns Hopkins University Baltimore, Md.

The Crystal Chemistry and Physics of Metals and Allovs

W. B. Pearson 806 pp. Wiley, New York, 1972. \$34.95


William Pearson is perhaps best known as the compiler of the Handbook of Lattice Spacings and Structures of Metals and Alloys. While engaged in this labor of Sisyphus, he has been conscious of the necessity to systematise the ever growing wealth of such in-

0.012 Kelvin (Guaranteed)

- Continuous refrigeration below 12mk
- Transient temperatures to 5mK
- · Cooling power to 1000 erg/sec at 0.1K
- · Unique He4 coldplate
- Numerous access ports to experimental region
- Custom mixing chambers
- Built-in SQUID* system

Superconducting Quantum Interference

S.H.E.CORPORATION 3422 Tripp Court San Diego, Ca. 92121 Tel: (714) 453-6300