letters

search for the necessity of the tool themselves makes students unafraid of the mathematics used and develop confidence with it. They also begin to feel that they are the ones who have the real control over the mathematical manipulations, because it is just a tool they use. It is usually a good idea in the introductory lecture to whet the appetite of the student by relating to him some of the striking phenomena in physics and astronomy. Then one can casually bring up the need for mathematics.

Gary R. Gruber Hofstra University Hempstead, New York when ads like the April one give facts used by the employer. Also, it discourages the "I would hire them if I could find them" syndrome. The disgraceful situation with respect to minorities in physics can be partially envisioned (by the general physics public) when we realize that of the 17 000 physicists with a PhD, only about 60 blacks, 8 Chicanos and one Native American (American Indian) are included.

It is hoped that PHYSICS TODAY will increase and intensify the "in-course guidance corrections" begun with the ad in the April issue to aim at the moral and practical goal of justice, equality and brotherhood—the realization of the great American dream.

WARREN E. HENRY Howard University Washington, D. C.

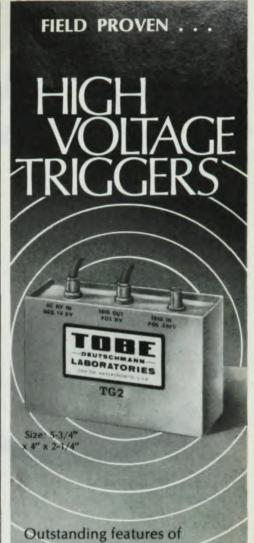
New Field?

I fear that, since leaving the mainstream of physics, I have fallen out of touch with some of the more esoteric new fields in our fast-changing science. My present work does, however, require me to be familiar at least with the terminology, if not the substance, of science. Thus, I was particularly intrigued by an ad in the "positions wanted" column in the April 1972 issue (page 86) for a speciality I have never seen mentioned in the help-wanted ads nor in the lists of occupations published by the various professional organizations.

Perhaps you could publish a brief article explaining what it is that a "black theoretical physicist" does and how his activities are related to those of solid-state or nuclear theoretical physicists.

Harry M. Kriz Morgantown West Virginia

CHAIRMAN OF THE APS COMMITTEE ON MINORITIES IN PHYSICS COMMENTS: We disagree with the implied criticism offered above by Harry Kriz. We feel that PHYSICS TODAY deserves congratulations for a policy that indicates it is serious about including minorities in the mainstream of physics. Under this kind of policy, an employer who really wants to be an equal-opportunity employer has a chance to validate the equal-opportunity claims. In general, when there is an ad for a position, it has been understood by all-black, white and brown alike-that the advertisement is for white prospective employees. This understanding comes from the observed practices of employers and copious disappointing experiences of blacks and other minorities. Too often when a black shows up, an excuse is made and the minority ob-seeker finds he has wasted his ime. This trouble can be avoided


More tests of QED

The article in "Search and Discovery" (October, 1972, page 17) on the current debate between supporters and doubters of quantum electrodynamics calls to mind the original arguments over Schrödinger's theory of continuous light emission as opposed to the quantum jumps of Werner Heisenberg and Niels Bohr. This letter offers a historical review of the situation.

For practical purposes the Schrödinger theory was superseded because it was inadequate to explain collision processes, and it was shown during the famous encounter between Schrödinger and Bohr in Copenhagen that the theory, as it then stood, could not produce the Planck radiation law. The published form simply stated that radiation was due to oscillations of the atomic dipole moment calculated from the hydrodynamical model of the atom. This is a heuristic precursor to the present theory of Edwin Jaynes.

However, even then it was clear that radiation rates would have to show a final-state amplitude dependence.3 and an experiment was performed by E. Gaviola to test this dependence.4 He looked at the relative intensities of 4046Å and 4358Å secondary resonance lines in mercury as he varied the relative populations of their final states by a factor of 100. As best we can tell this experiment has gone unnoticed because it appeared after the issue of Schrödinger's interpretation was dead. Gaviola himself doesn't mention it in a critical review of quantum mechanics written in 1929.5

Recently R. K. Nesbet has shown that the Planck radiation law can be obtained semiclassically,⁶ and further experimental tests of semiclassical theory (SCT) have been performed by

Outstanding features of TOBE DEUTSCHMANN TG's include:

- Fast rise time~5 nanosec.
- Extremely low jitter ...~3 nanosec.
- High amplitude..50kV pulse output.
- · Pulse repetition frequency .. 1 pps.

All TG series triggers provide a high energy fast rise pulse for reliable firing of capacitor discharge switches and systems. Triggers may be parallel or sequentially fired with minimum interpulse jitter.

Designed to improve the performance of high voltage spark gap switches, TG's also eliminate the need for elaborate triggering circuitry. Both positive and negative output models are available. Triggers are extremely compact and hermetically sealed for long life.

For further information on TG's and high voltage capacitors systems, write or call:

Tel: (617) 828-3366 Telex: 92-4427

CANTON, MASSACHUSETTS 02021

Circle No. 11 on Reader Service Card

20 SECOND

That's how long it takes to get complete digital results with the Tropel Miniscan system. This means no more waiting for curve interpretation or for your turn at the computer.

Tropel has combined its unequalled experience in optics with the most advanced on-line data processing to give you accuracy and speed that no other system can match. The economies to your operations, whether R & D or production, are obvious.

How Tropel Does It

The System mathematically processes a slit or edge scan of a point or line object. The result is the O.T.F., whose modulus is the Modulation Transfer Function. A series of M.T.F. curves taken at sequential positions renders the exact point of best focus. The System obviates the need to form separate images of a large number of ruled targets, each having a different line spacing. It is the most flexible system available and can be used for a wider variety of test applications without modifying the components.

Write or call us about your specific O.T.F. measurement needs. We'd like to tell you the complete story of the Tropel Miniscan® O.T.F. System . . . and how it can give you new versatility, speed and economy. Lease terms are available.

52 West Avenue, Fairport, New York 14450

Circle No. 12 on Reader Service Card

letters

Hyatt Gibbs⁷ and by us.⁸ While these lack the apparent directness of Gaviola's original test, they are more carefully analyzed in terms of the underlying assumptions of SCT. Moreover, they test a more complete theory. Each favors QED. Thus it has taken us 45 years to rediscover the inadequacy of the hydrodynamical model of the atom.

References

- 1. W. Heisenberg, *Physics and Philosophy*, page 42, Harper Torchbooks, 1962.
- E. Schrödinger, Ann. Physik 79, 755 and 81, 134 (1926) and O. Klein, Z. Physik 41, 416 (1927).
- J. H. Van Vleck, J. Franklin Inst., April 1929, page 475.
- 4. E. Gaviola, Nature 122, 772 (1928).
- 5. E. Gaviola, Z. Physik 58, 651 (1929).
- 6. R. K. Nesbet, Phys. Rev. A 4, 259 (1971).
- H. Gibbs, Phys. Rev. Letters 29, 459 (1972).
- D. K. Anderson, R. T. Robiscoe, J. M. Wessner, Phys. Rev. Letters 29, 1126 (1972).

DAVIS K. ANDERSON RICHARD T. ROBISCOE JOHN M. WESSNER Montana State University Bozeman, Montana 1100 in one step from X-band. If successful, this precedure will allow a direct comparison of a 10.7-THz (28 micron) H₂O laser frequency with an X-band frequency standard.

Their pioneering work in high-order single-step frequency multiplication should be regarded as a significant advance towards very versatile methods of infrared and visible radiation frequency synthesis that will be highly precise as well as being relatively simple, inexpensive and reliable. These desirable features are expected to be attainable partly because it is possible to compare two frequencies directly, although they differ by much more than a factor of 12. The eventual impact on technology and science may be considerable.^{3,4}

References

- D. G. McDonald and others, Appl. Phys. Lett. 18, 162 (1972).
- D. G. McDonald and others, Appl. Phys. Lett 20, 296 (1972).
- J. S. Wells and others, Proc. IEEE 60, 621 (1972).
- D. Halford and others, Proc. IEEE 60, 623 (1972).

Donald Halford National Bureau of Standards Boulder, Colorado

KENNETH EVENSON REPLIES: Donald Halford's comments are correct. The sentence in question could be better expressed: A chain of lasers is needed when one uses the room temperature metal-metal diode because the signalto-noise ratio decreases with increasing harmonic numbers, thus limiting the maximum useful harmonic number. The twelfth harmonic was the maximum one used in the experiments described in the April issue as well as those revised ones reported in Halford's reference 1, which resulted in the 100fold improvement in the accuracy of the speed of light. However, signals with higher harmonic numbers from metal-metal diodes might be obtainable with longer averaging times. We presently are setting up an experiment to obtain a factor of 33 in one step from a laser with a metal-metal diode. Much higher laser harmonics might be obtainable with the Josephson junc-

> Kenneth M. Evenson National Bureau of Standards Boulder, Colorado

Comparing frequencies

In the interesting news item "Absolute laser frequency measurements" (April, 1972, page 17), which described the measurement of the 88-THz frequency of cesium, a statement was made that "A chain of experiments is needed because two frequencies differing by more than a factor of 12 cannot be compared directly." Although the article otherwise was very well written, this statement is incorrect and misleading.

On 3 September 1970, S. G. McDonald, A. S. Risley, J. D. Cupp, and K. M. Evenson at the National Bureau of Standards in Boulder directly compared the 0.89-THz frequency (337micron wavelength) of an HCN laser with an X-band frequency. This was a factor of 100 in one step. On 12 August 1971 the same group directly compared the 3.82-THz frequency (78 micron) of an H2O laser with an X-band frequency. This was a factor of 401 in one step.² They used a Josephson unction as the nonlinear element. Alhough the multiplication factor was ar greater than 12, the signal-to-noise atios obtained in these experiments vere excellent, and McDonald and oworkers presently are setting up an xperiment to obtain a factor of about

Correction

January, page 5—The cover photograph should have been credited to Ron Church of La Jolla, California.

Squid*...

*superconducting quantum interference device

SHE SQUID instruments are used wherever ultra-sensitive measurements must be performed. Recent applications include:

geomagnetic fluctuations superconductivity biomagnetism low temperature resistivity thermopower studies nuclear magnetism magnetic thermometry infrared detection temperature dependent susceptibility VLF detection weak magnetic impurities **NMR** noise thermometry remanent and induced magnetization teaching lab experiments

Basic Magnetometer, Model MGS-20

Variable slew control unit Model VSC

Provides the extremely fast response and wide dynamic range required for sensitive magnetic measurements in an unshielded, noisy ambient.

Digital/analog output display, Model DAC. Features resolution of 1/10° of full scale to enable observation of small changes on a slowly-varying, large amplitude background signal.

Contact us for details on the complete line of SHE SQUID instruments.

S.H.E. CORPORATION 3422 TRIPP CT. SAN DIEGO, CA 92121 [714] 453-6300