topics that it is quite a challenge to provide a brief, lucid, but not too superficial account of the field. Michael Longo has turned his undergraduate course notes into a rather well conceived and exciting survey of particle physics.

Longo is a high-energy experimentalist, and the viewpoint presented in the book is experimental and phenomenological in emphasis. The book ranges over topics in strong, electromagnetic and weak interactions, with special emphasis on a straightforward description of the relevant phenomena.

An informative chapter on detection devices and on high-energy experiments is followed by descriptions of famous experiments and discussions of their physical relevance. Although the accounts are brief, the "flavor" and style of high-energy physics is rather well communicated. Longo's enthusiasm for the subject clearly shows through, and the full-page pictures of famous physicists and experimental setups add to the attractiveness of the book.

The reader is expected to have some working knowledge of quantum mechanics. The oftentimes unconventional notation could be confusing for some students. A second difficulty with the book is the first chapter, where the quantum numbers, conservation laws, and particle spectrum are all unceremoniously dumped in the reader's lap. In spite of these technical shortcomings, this could be a useful elementary text for an undergraduate course on particle physics.

RICHARD SLANSKY
Yale University
New Haven, Connecticut

Electron Optics and Electron Microscopy

P. W. Hawkes 244 pp. Barnes and Noble, New York, 1972. \$17.00

The subject of electron optics, as it applies to the electron microscope, is a substantial one, with a very extensive literature to which this little volume is the latest addition.

The book contains chapters on the history of and justification for the electron microscope, electron lenses (including their most common aberrations), the electron microscope itself, the scanning microscope and microanalyzer and a short chapter on applications. This global view of the electron microscope is compressed into a little over 200 pages. It can be appreciated, then, that most of the material is in a very condensed form, and many aspects are either glossed over or completely omitted. Nevertheless, the

Considering a Tunable Laser?

Five Reasons Why You Should Choose a Chromatix.

- The first reason is versatility. The pumping laser itself (Chromatix Model 1000 Nd: YAG) provides 26 discrete frequencies.
- Next, you can add our Model 1050 Dye Laser to obtain both tunable UV and VIS, from the shortest tunable wavelength available commercially, 265 nm to 415 nm.
- Then, by adding our Model 1020 Optical Parametric Oscillator the tuning range is extended to 3.4 microns into the infrared.
- If you need high resolution, add our narrow-line accessory and get the extremely narrow bandwidth of 1/1000 cm⁻¹ (stability ±1/300 cm⁻¹), tunable from 1.7 to 3.4 microns.
- And if you're not convinced yet, consider this—with every system we send an installation engineer. Shown here with the system in hand is our Service Manager, Mr. Lindsay Austin, prepared to make certain our performance specifications are met in your laboratory.

Interested? Call or write Chromatix for complete specifications and prices.

chromatix

1145 Terra Bella Ave., Mountain View, CA 94040 Phone: (415) 969-1070 Telex: 910-379-6440

ELECTRIC CIRCUITS AND MODERN ELECTRONICS

by L. W. Anderson W. W. Beeman, University of Wisconsin

Designed for science and engineering majors, this text provides a clear understanding of the fundamentals of DC and AC circuit analysis and solid state electronics. Emphasis is on the physical understanding of how things work. Beginning at a low level and developing the major topics in detail, the book avoids the elaborate formal treatment generally geared toward electrical engineers. There are over 300 problems with answers to most provided at the end of the text.

1973/560 pages/\$14.00

MATHEMATICAL ANALYSIS OF PHYSICAL PROBLEMS

by Philip R. Wallace, McGill University

The underlying principle of this physics text is that the function of the mathematics is to provide a description of physical phenomena and a tool for analyzing the features of physical systems. Approximately 250 problems are integrated into the text to verify the student's mastery of the material and to encourage him to pose and solve his own problems. Included in the mathematical physics are: factorization method, electrodynamics of superconductors, Cerenkov radiation, theory of neutron chain reactors and linear response theory.

1971/500 pages/\$17.00

ENVIRONMENTAL POLLUTION

by Laurent Hodges, Iowa State University

A scientifically accurate introduction to environmental pollution and its control, this text discusses all of the major types of pollution: air, water, solid waste, noise, agricultural, pesticide, thermal, and radioactive. The author describes the chemical and physical properties of different pollutants; their movement and behavior in the environment; their effects on plants, animals, human beings, and materials; the economic and legal questions that pollutants pose, and extensive quantitative data on sources and levels of pollutants is provided.

1973/384 pages/\$7.95

ASTROPHYSICS

by William K. Rose, University of Maryland

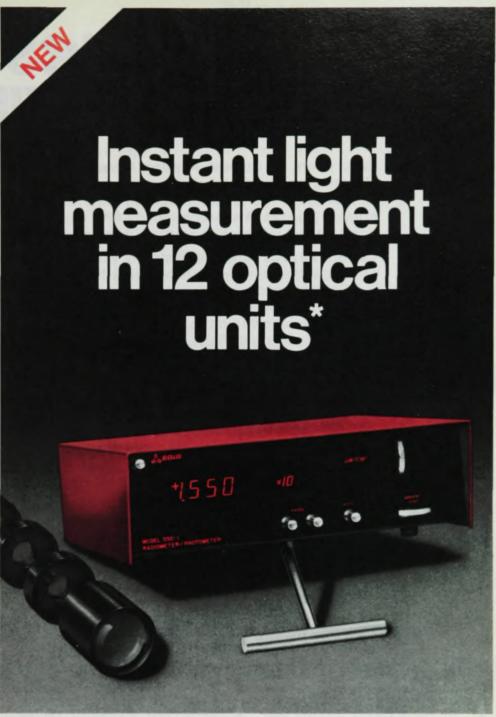
The last decade has been a revolutionary period in the history of astronomy. Detailing the most recent developments in astrophysics, this unique text provides an up-to-date introduction to the subject. Intended for readers with a minimum of two years of college physics, the unusually concise text employs a modern approach and offers an overview of the whole of astrophysics rather than focusing on a single specialized area. It will be of interest to readers in physics, chemistry, and applied science, as well as astronomy and astrophysics.

1973/304 pages/\$14.00

For examination copies please send your course title and approximate enrollment to:

Kaye A. Widmayer, Advertising Editor HOLT, RINEHART AND WINSTON, INC. 383 Madison Avenue New York, New York 10017

material that is included is valuable and well presented.


The book is written for "the beginner," but precisely what kind of beginner is, to say the least, not clear. If, for example, the book is intended to be useful for the beginning user of electron microscopes, then it would be of little value. Indeed, many beginning users would be completely lost in mathematics before the end of the second chapter, and furthermore, they would find that the very short chapter on applications would be virtually use-Perhaps the beginner that Hawkes mentions is the beginning student who hopes to emulate Hawkes himself, and this student would indeed find this to be a useful book. Such a student would be unperturbed by the lack of practical information such as relevant dimensions, or specimen-preparation techniques, and would not be in the least concerned that the unit of pressure used throughout is the Pascal rather than the Torr, and would find that the very clear treatment of the properties of electron lenses would be of great help in his further reading. Indeed, it is because of this clear exposition that I would recommend the book not only to the beginner, but also to those advanced users of electron microscopes who would like to renew their acquaintance with the fundamentals of the machine and its limitations.

ALBERT V. CREWE University of Chicago

Fourier Transforms and their Physical Applications

D. C. Champeney 256 pp. Academic, New York, 1973. £5.20

Mathematics is the exact language that physical scientists use to correlate and interpret their experimental findings and to express their theories. Fourier series, for example, are used to describe periodic functions, presenting them as infinite sums of oscillations at frequencies that are harmonics (discrete spectrum) of the fundamental. The less familiar Fourier transform can express an arbitrary aperiodic function as an infinite integral over a continuous range of frequencies. First used in the treatment of single-pulse phenomena by the electrical engineer, the Fourier transform (and the related operations of convolution and correlation) now find application in optics, acoustics, scattering and diffraction of x rays, neutrons and electrons, and aperiodic effects in electrical circuits. Wider familiarity with this powerful mathematical tool will certainly broaden its field of application. D. C.

Model 550 Radiometer/Photometer

*Direct Reading in 12 Optical Units

- 1. Watt/CM²
- 7. Phot
- 2. Joule/CM²
- 8. Candela
- 3. Ft. Candle
- 9. Ft. Lambert
- 4. Ft. Candle-Sec.
- 10. Watt/CM2-Ster
- 5. Lux
- 11. Ampere
- 6. Lux-Sec
- 12. Coulomb

Autoranging – 7 Decades

CW and Pulsed Light Measurements

- Single, Stable, Low Noise, Silicon Multiprobe Detector
- 3½ Digit Readout With Decade Presentation
- Ambient Light Compensation
- Radiometric and Photometric

- · Accuracy: 5%
- Stability and Repeatability: better than 1%
- · Simplicity of Operation
- Portable
- · Rechargeable Battery Option
- · Production and Research Applications
- Low Cost

The Model 550 System offers the optimum in price/performance capability. Instruments are available for 15 day evaluation on a consignment order basis. Find out why industry surveys continue to rank EG&G as #1 in light measurement instruments. Write or call for a catalog and more information: EG&G, Inc., Electro-Optics Division, 35 Congress St., Salem, Mass. 01970. Tel. (617) 745-3200. On West Coast, Tel. (213) 484-8780.

Circle No. 34 on Reader Service Card