letters

continued from page 15

believers, and I doubt that quantum electrodynamics is necessary."

According to the quantum theory, everything is quantum mechanical; and if not, then the theory must be scrapped, and replaced by a new one (perhaps a neoquantum theory?).

One thing that any theory must explain, however, is the phenomenon of superradiance—greatly enhanced spontaneous emission due to coherence in spontaneous radiation processes (R. H. Dicke, Phys. Rev. 93, 99, 1954).

According to quantum theory, the basic Hilbert-space superposition principle explains superradiance neatly, as an interference effect (constructive interference, as opposed to destructive interference, which can cause extremely low spontaneous-emission rates, also observed experimentally).

However, a semiclassical theory that dispenses with such effects for the electromagnetic field would not appear to be able to explain such extremes in the observed spontaneous-emission rates, and hence one might think that Jaynes would have to do some acrobatic thinking to explain how the semiclassical radiation theory can account for some spontaneous-emission phenomena that have indeed been observed, but for which, so far, only quantum mechanics seems to supply an answer.

KENNETH J. EPSTEIN Chicago, Illinois

Self-pacing: more caution

We wish to comment on the letter by T. R. Sandin, Julius Taylor and O. B. Okon (October, page 15). The authors, in noting the growing popularity of self-paced courses, offer a cautionary note to those conducting or planning forms of self-paced courses in which disadvantaged students will be en-rolled. They point out, "for example, the extreme version of the self-paced course in which the student is given some sort of study guide and then left mostly on his own to achieve the guide's objectives will produce disastrous results for most disadvantaged students." Of course, experience has shown that the standard lecture course will also be disastrous for most of these Self-paced courses, when properly designed and correctly implemented, have demonstrated again and again their superior ability to generate activity and interest in the subject being studied.

Keller method or PSI courses are only one possibility among many for implementing self-paced instruction. They have the advantage, however, that they have been carefully conceived to modify student behavior by using principles that have evolved from years of work on the development of the reinforcement theory of learning. The Keller method is not an "extreme version" of self-pacing; in fact, it incorporates the desirable features of a self-paced course as cited by Sandin et al.

We offer a caution in addition to that of Sandin *et al*: Either use the procedures as put forth by Keller or his disciples^{1,2,3} with no modifications, or put in the time and effort required to learn enough reinforcement theory so that you can defend the modifications you are making with reference to reinforcement theory.

The Keller method of instruction is a delicate apparatus. If you don't understand the principles of its operation, the probability that tinkering with it will improve its operation is very small.

References

- Fred S. Keller, "Good-bye teacher ...," Journal of Applied Behavior Analysis 1, 79 (1968).
- 2. Ben A. Green, Jr, "Physics teaching by the Keller Plan at MIT," Am. J. of Phys. 39, 764 (July 1971).
- 3. Proceedings of the Keller Method Workshop Conference, (A. J. Dessler, ed) Rice University, Houston, Texas (1972).

STEPHEN D. BAKER A. J. DESSLER Rice University Houston, Texas

The Gibbs in use

In his letter (October, page 67) Hans Cassell proposes the "Gibbs" as the cgs unit of surface tension. His proposal prompts me to point out that the Gibbs is already in use as a unit of entropy (1 Gibbs = 1 cal deg⁻¹), principally by W. F. Giauque and his coworkers at Berkeley [see, for example, J. Chem. Phys. 42, 3 (1965)]. It appears that there is no lack of desire to memorialize Gibbs.

BRIAN W. MOORES University of Hartford West Hartford, Connecticut

Physicists on coins?

The local chapter of SPS is considering a project of collecting coins that have pictures of physicists or physics equipment on them. We would appreciate any information that anybody has on lists of such coins and we would like to correspond with anybody who has been collecting them. Perhaps we will find that there are not that many coins that

let's talk!

meet elscint at the

mössbauer symposium

(jan. 28)

physics show

(jan. 29-31)

booth 52

elscint.

The Most Exciting Name in Nuclear Physics

Elscint's Director of R & D, heading a staff of 70 scientists and engineers, is a demanding man without a superlative in his vocabulary. For 13 months he ordered an unprecedented series of tests and field evaluations on Elscint's new Snap-Off Timing Discriminator. The final results were too good to comprehend; Elscint surpassed all competitive instruments — yes, even the constant fraction discriminator. With 13 months of accumulated data to substantiate his position, our Director of R & D finally ventured to call the Snap-Off instrument,

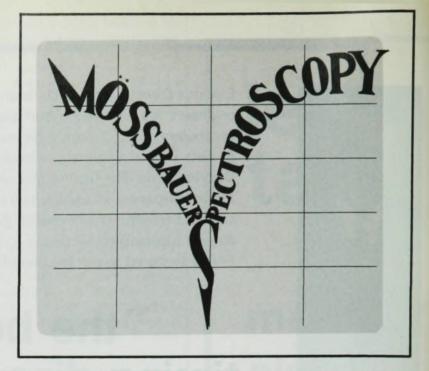
"the best timing discriminator."

A side-by-side comparison in your laboratory with any other timing discriminator will dramatically convince you too. No matter how you measure resolution, by pulser input or by γ - γ method, Elscint's new NIM will prove superior. With large or small Ge-Li detectors, with plastic or with NaI(TI), the Snap-Off Timing Discriminator will still be the very best. In brief, this is what you can expect:

- timing measurements which are virtually free of rise-time variations
- walk-free signals from any kind of detector without timing filter amplifiers
- reduction of jitter effects to an unprecedented degree
- 1 mv sensitivity
- with only one control, it is easier to use than any other timing discriminator

Let Elscint give you the full facts. Write now. In the USA: Princeton Applied Research Corp., P.O.B. 2565, Princeton, N. J. 08540, Telephone: (609) 452-2111. In France: Elscint S.A.R.L. 49 Rue L. Bleriot, BUC 78, Telephone: 951 61 20. In Germany: Elscint GMBH, 22 Sonnenberger Str., 62 Wiesbaden, Telephone: (06121) 305272. In other countries write to: Elscint Ltd., Haifa, Israel for local address.

elscint Ltd.


ADVANCED TECHNOLOGY CENTER

P.O.Box 5258 · Haifa · Israel · Telephone: (04) 522851 · Telex: 4-654 · Cables: ELSNT IL

RANGER ELECTRONICS

INTRODUCES
FOURTH
GENERATION
MÖSSBAUER
EQUIPMENT

BOX 863, ALVA, OKLAHOMA 73717 PHONE 405-327-0330

The Ranger Mössbauer Spectrometer features....integrated circuit technology....Digital switching for easy range selection and reproducibility....Constant acceleration motion in either the symmetrical or fly-back mode....a Multiplexing option and a built-in Moire' interferometer. You'll also like our new Conversion Electron Detectors...our 220 Khz Data Acquisition System, our 1.2 K Cryogenic Sources, our Vaccum Furnace and Controller.

Visit our booth (No. 13) at the 1973 Physics Show in New York. Circle No. 38 on Reader Service Card

Find a weak signal

buried in noise.

The new Ubiquitous® Correlator computes in real time: signal averages, auto- and cross-correlation, and amplitude probability.

Write for complete details on the new UC-201. Federal Scientific Corp.,

Federal Scientific Corp 615 West 131st St., New York, N.Y. 10027.

FEATURES:

- Highest sensitivity.
- Fastest speed for quick results.
- Finest time resolution with more points per display.
- Easiest to use and calibrate.

federal scientific

Real-Time 512-Point Correlator / Averager

at Nicolet Booth 36, Physics Show

Circle No. 39 on Reader Service Card

Measure Sound Velocity to 10ppm

The model 5054 ULTRASONIC TIME INTERVALOMETER is an electronic system consisting of a Model 5053 multipulser, an oscillator, and a counter. It is used with ultrasonic transducers and an oscilloscope to measure ultrasonic wave travel time in materials with absolute accuracy to 10 ppm.

Applications:

Modulus of Solids Compressibility of Fluids Phase transformations Delay lines and standards Composition effects Anisotropy Quality Control Residual Stress

For product information and/or application notes, call or write: N.D.T. Dept.

PANAMETRICS

221 Crescent St., Waltham, Mass. 02154 Tel: 617 899-2719

Circle No. 40 on Reader Service Card

letters

have pictures of either physicists or physics equipment on them and we may have to extend our search to the area of medals that have been issued on a commemorative basis and that would be available to collectors.

Several years ago there was some discussion about physicists on stamps and physics equipment on stamps, but we have not seen any similar reference to physicists or physics equipment on coins, and we are looking to the physics community for assistance.

ROBERT R. MEIJER Parsons College Fairfield, Iowa

Corrections

October, page 35—Last line refering to "Range" of the Lyman-alpha humiditiometer should read "-40 to +20 degrees C dewpoint."

Page 37-Photograph credit should be James R. Sartor; reference 17 should read Charles Abbott and Ted Cannon; 5th line from bottom of last column should have -6.2×10^{-5} , not $-62 \times$

Page 38-The last two "words" of the legend for figure 6 should be 10.0 microns.

Page 55, column 1-Ray A. Burnstein was promoted to professor of physics at Illinois Institute of Technology, not associate professor.

November, page 5-Cover note failed to mention that the molecular models pictured on front cover were supplied courtesy of Klinger Scientific Apparatus Corp.

November, page 15, line 21 of H. Bacry's letter-Phrase "its speed is finite in both positive and negative directions" should read "its speed is infinite . . . '

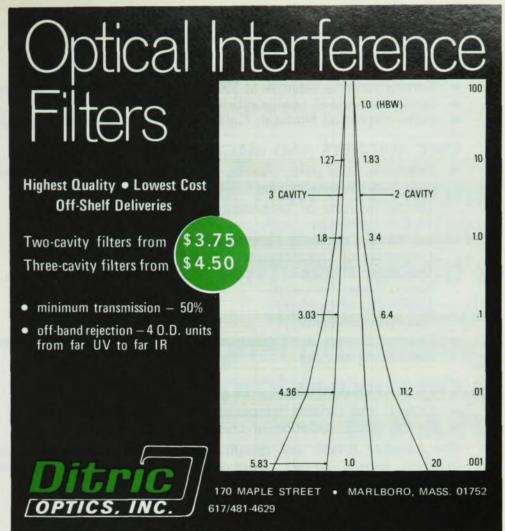
Page 32—Equation (1) should read

$$u_1 = U_1 \cos k(x_1 - v_R t)$$

and equation (2) should read

$$u_3 = U_3 \sin k(x_1 - v_R t)$$

Page 32-The exponent on the righthand-side of equation 5 should read


$$-z (k_{\rm R}^2 - k_{\rm L}^2)^{1/2}$$

Page 33-The exponent on the righthand-side of equation 6 should read

$$-z (k_{\rm R}^2 - k_{\rm T}^2)^{1/2}$$

Page 35, figure a—The "shear " curve should remain the outer curve in both upper and lower sections; the "shear 1" curve should remain the inner curve in both upper and lower sections. The two shear curves only touch on the z axis and do not intersect.

Page 36, figure 3b—The vertical arrow on the left should be labelled x_2 ; figure 5-The first three and the last three side lobes are missing (the last four lines of text on this page describe the ideal correlation signal correctly).

Circle No. 41 on Reader Service Card

