But L=0 by virtue of the field equation (3); that is, $\theta_{\mu}{}^{\mu}=0$. Thus, the dilatation current and conformal current defined respectively by

$$D_{\mu} = x^{\nu} \Theta_{\mu\nu}; \quad K_{\mu\nu} = \left(2x_{\mu}x_{\lambda} - g_{\mu\lambda}x^{2}\right) \Theta_{\nu}^{\lambda}$$
(5)

are exactly conserved in the forms $\partial^{\mu}D_{\mu} = \Theta_{\mu}^{\mu} = 0$; $\partial^{\nu}K_{\mu\nu} = 2x_{\mu}\Theta_{\lambda}^{\lambda} = 0$

Thus, the model has dilatation symmetry.

The 0(4, 2) mass equation for equation (3) is simply

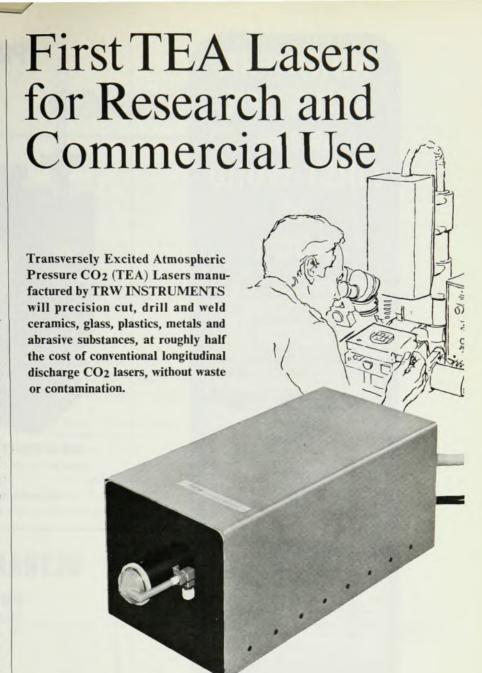
$$m - m^2/M = 0 \tag{6}$$

which has two eigenvalues, m = 0 and m = M. We may associate m = 0 with strictly massless Goldstone's bosons, and m = M with the real world of strongly interacting particles with nonzero rest masses in the quark model. Indeed, if $m_{\varphi} = m_{\pi}$, then chiral SU₃ × SU₃ symmetry is broken in the manner proposed by Gell-Mann, Oakes and Renner.2 We are thus able to obtain a nontrivial scale-invariant wave equation that fulfills Lorentz-covariance, gauge-invariance, 0(4, 2) invariance, and SU3-invariance in the appropriate limit. Equations of type (3) include convective currents (the secondorder derivative structure) and were first considered in connection with radiation reaction theories.3

References

- A. O. Barut, Phys. Rev. Lett. 20, 893 (1968).
- M. Gell-Mann, R. J. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968).
- 3. G. Rosen, Nuovo Cimento 32, 1037 (1964).

A. O. E. Animalu Drexel University Philadelphia


Waste management

It is with great interest that I read "Physics Looks at Waste Management" in the February issue (page 32). I would like to make the simple point that if people were less wasteful, there would be less junk around to contend with. For example on the cover of this same issue, which represents a pile of junk cars, one can plainly see that the green one, on the top of the pile, only needs a new clutch.

DANIEL R. PARSIGNAULT American Science and Engineering Cambridge, Mass.

Correction

February, page 73—The figure given in the table for gas-main explosions should fead 3×10^{-12} instead of 3×10^{-1} .

TRW Instruments has lined up a series of "firsts" with a low-cost, high power transverse discharge laser head measuring a compact 9" high by 8" wide by 171/4" long — that's right, INCHES. It delivers the highest power in infrared currently obtainable in a commercial pulsed laser, with peak power densities in excess of 5 billion watts per square inch. Low cost means under \$10,000.

Principal Specifications

Peak Power: 300 KW

Average Power: 20 Watts

Repetition Rate: 400 pps max.

Write or call TRW INSTRUMENTS or their representative in your area for complete specifications or custom instrumentation information.

TRW INSTRUMENTS

139 ILLINOIS STREET, EL SEGUNDO, CALIFORNIA 90245 • (213) 535-0854

TRW