letters

- 40. Warren Nyer
- 42. Anthony Turkevich
- 43. Aaron Sayvetz
- 44. Bernard Smaller
- 45. —Hanna
- 46. Theodore Novey
- 47. Arthur G. Barkow
- 48. Leonard Lieberman
- 50. Lloyd Lewis
- 51. J. M. Bradford
- 62. Leslie Coad
- 63. Gerhard Groetzinger
- 64. not Francis Shonka
- 65. James B. Coon

- 55. James B. Coon
 66. Fitzhugh Marshall
 67. not Serge Golian
 69. Serge Golian
 71. —Newman
 73. George R. Carlson
 74. Donald A. Edwards
 75. Ted Wahlschlagel
 78. Lester Skaggs
 81. L. W. Phillips
 85. Warren Henry
 87. E. Newman Pettitt
 88. —Sawyer
 89. Joe Novak
 91. Harry M. Allred
 92. Henry E. Duckwort
 93. William Frye
 96. Joseph Getzholz
 98. Jack (?) Moulton

- 92. Henry E. Duckworth

- 98. Jack (?) Moulton
- 99. Duilio N. DiConstanzo

Besides identifying himself as 91, Harry M. Allred insists that the picture was taken at the University of Chicago in 1940. The winners were Mark Fred (80) and Stanley Siegel (29) of Argonne National Laboratory who supplied 26 new names.

The Editor

More clock paradox

Enough would seem to have been said m Mendel Sachs's article itself (September 1971, page 23 and January 1972, page 9). But I would like to call attention to a related matter. James Terrell states: "Acceleration with respect to Lorentz reference frames is an absolute matter, readily detected, as any one who has been a passenger in an automobile or airplane knows." In a similar vein, Victor Korenman aserts " ... the felt acceleration of the travelling twin is sufficient asymmetry to remove the paradox ..." Such statements are found in many treatments of relativity, but they are incorrect. If for example the "travelling twin" undergoes his accelerations under the influence of gravitational fields, rather than rocket motors, he need "feel" no acceleration whatever; and if the earthbound twin is spun in a circle, he will "feel" an acceleration. So you see the problem is not so simple as merely deciding who feels an acceleration. Determination of field derivatives will similarly not solve the problem, since arbitrarily large ones may be introduced without any net acceleration by using large and small masses suitably positioned. The fact is that there is no simple experiment that the twins can do inside their respective cubicles to reveal the asymmetry. They must either look at the fixed stars, which are the source of the asymmetry in Mach's sense, or they must wait until they are together again, in order to see which one it was that took the trip.

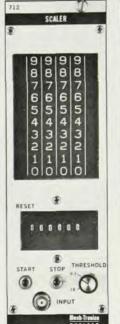
ROBERT H. GOOD California State College Hayward, Calif.

There is no need to add to the numerous excellent replies to Mendel Sachs that appeared in your January issue. I wish only to call attention to some earlier discussions that deserve to be read and to emphasize a point that has not been made.

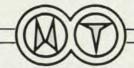
The superb expository paper1 in which P. Langevin replaced Einstein's bare clock2 by a space traveler sending and receiving electromagnetic time signals contains a lucid derivation of the result.

In calculating what is observed in the frame of the traveling twin it is necessary to allow for the effect of the longitudinal acceleration. Max Born³ has pointed out that the principle of equivalence and the formula (derived4 from it and special relativity) for the effect of a gravitational field on clocks suffice for this calculation. C. Moller⁵ has given the corresponding exact general-relativity calculation, as have Born and Walter Biem⁶.

The twin who stayed at rest in one inertial frame, using special relativity, and his accelerated brother, using the principle of equivalence as well, come to the same conclusion. The twin problem is not a paradox. It is a thought-experiment demonstrating the logical consistency of special relativity and the principle of equivalence7.


References

- P. Langevin, Scientia 10, 31 (1911).
- 2. A. Einstein, Ann. Physik 17, 891 (1905). This paper is available in translation in The Principle of Relativity by A. Einstein and others, A. Sommerfeld, ed., Dover, New York (1952).
- 3. M. Born, Die Relativitätstheorie Einsteins (3. aufl.) J. Springer, Berlin, 256 ff. (1922), now available in a revised English translation: M. Born, Einstein's Theory of Relativity, revised edition with G. Leibfried and W. Biem, Dover, New York (1962) pages 354-356.
- 4. A. Einstein, Jahrbuch der Radioäktivitat


PRODUCTS

STYLING

"Maximized Value Design"

MODEL 712 TEN DECADE SCALER = 350 KHz maximum continuous counting rate ■ 80 nanosecond pulse-pair resolution ■ .1 to 10 volt integral discriminator ■ Price \$390.00

MODEL 756 TIMER . Six decade preset 10 MHz Scaler ■ Synchronized start . Time base line frequency derived Price Fast delivery

NUCLEAR

430A Kay Ave. Addison, III. 60101

For more information WRITE OR CALL COLLECT (312) 543-9304

Circle No. 10 on Reader Service Card

Our helium is good for nothing.

If you bought our helium to do nothing and it did something, you'd probably do something to us.

So we do something to make sure our helium does nothing. We keep impurities out. In fact, we know how to keep all but .0001% of them out. (For critical applications, our Rare and Specialty gases

department sells helium that is 99.9999% pure. The purest you can buy.)

If you'd like to know more about a gas that does less, call Hank Grieco (201) 464-8100. Or write to him at Airco Industrial Gases, 575 Mountain Avenue, Murray Hill, New Jersey 07974.

Circle No. 11 on Reader Service Card

und Electronik 4, 411 (1907), pages 454-459.

- C. Moller, The Theory of Relativity, Oxford U. P., London (1952), pages 258-262.
- M. Born, W. Biem, Proceedings Amsterdam Series B 61, 110 (1958).
- R. D. Sard, Relativistic Mechanics, Benjamin, New York (1970), pages 101-104, 309-319.

R. D. SARD

University of Illinois at Urbana-Champaign Urbana, Illinois

In my view most of the debate and most of the profusion of erroneous statements on this subject arise from a failure to ask the proper questions. Except for a few competitors of greatly similar character the theory of general relativity is presently accepted as the proper description of space-time and its interaction with matter (for problems in which quantum effects may be ignored). Thus the theoretical prediction for the result of round-trip clock experiments should be done with general relativity as Sachs asserts. The questions that should be asked are then: What is the correct result, and is it the same as predicted by a naive application of special relativity? In contrast, much of the debate seems to concern itself with the question of whether special relativity is or is not a logically complete theory for dealing with such problems.

As several of the letters in reply to Sachs assert, experimental evidence seems to provide the answer to the first question; that is, for experiments carried out in small regions, naive special relativity gives the answer. The second question is where erroneous answers abound. The fundamental idea of relativity theory is that physical laws have the same mathematical expression for all observers regardless of their position or state of motion. Special relativity consists of those results obtainable from restricting that principle to observers moving uniformly with respect to each other. (That is, they have to be "far away" from large masses or only compare measurements over small intervals of space and time!) Thus, in this view the answer to the second question is an emphatic no. Statements that the felt acceleration of the "travelling" twin creates an assymetry that resolves the "paradox" (Korenman) or that acceleration is an absolute (Terrell) appear as ad hoc additions to the special theory, which can only derive their justification from a larger theory describing effects due to acceleration in terms of motion with respect to matter. General relativity is believed to be that theory.

In his article Sachs presents a formulation of space-time theory that is supposed to remove an ambiguity in general-relativistic computations of proper time intervals, namely the sign of the square root of a quadratic form. The requirements for such a formulation are that the interval computed be always equal to that computed according to the original method and that it always successfully remove the ambiguity. Sachs's formulation, as several of the letters pointed out (Richard Price and Vern Sandberg, John Fletcher), falls on the first count and is thus a theory different from general relativity. Meeting the second criterion is not really so helpful, since the supposed ambiguity is easily resolved. In principle one may refer, say, to measurements of the Hubble parameter at the beginning and end of an interval to determine whether the appropriate sign of ds be positive or negative for the interval.

In the present view then the question may be stated as follows: The comparison of ages between a "stationary" and a "travelling" twin is made by comparing

$$\int ds = \int (g_{ij} dx^i dy^j)^{1/2}$$

computed for each in a coordinate system obtained by solving the general-Provided the relativity equations. "travelling" twin doesn't travel very far (as in laboratory experiments), or on long trips he remains "away from large masses" (black holes for example) and is accelerated by mechanical rather than gravitational forces, the answer will be essentially the same as given by special relativity. To demonstrate the nonexistence of a paradox, an adequate general-relativistic description of an accelerated coordinate system is required; to my knowledge this does not exist yet.

JOHN ROBERT BURKE California State College Hayward, Calif.

Metric time?

At present most of the countries of the world are either metric or going metric, traditionally minded including countries like Great Britain. The advantages of the metric system are obvious, and so there is no reason why one should not extend this system to include the measurement of time. We cannot change the number of days in a year since Nature does not permit this, but it should be possible to divide one full day into twenty hours so that night and day will consist of ten hours each. This would be more convenient than dividing a full day into ten hours, because this would make an hour much longer as compared with the present

Wide Band, Precision

CURRENT

With a Pearson current monitor and an oscilloscope, you can measure pulse or ac currents from milliamperes to kiloamperes, in any conductor or beam of charged particles, at any voltage level up to a million volts, at frequencies up to 35 MHz or down to 1 Hz.

The monitor is physically isolated from the circuit. It is a current transformer capable of highly precise measurement of pulse amplitude and waveshape. The one shown above, for example, offers pulse-amplitude accuracy of +1%, -0% (typical of all Pearson current monitors), 10 nanosecond rise time, and droop of only 0.5% per millisecond. Three db bandwidth is 1 Hz to 35 MHz.

Whether you wish to measure current in a conductor, a klystron, or a particle accelerator, it's likely that one of our off-the-shelf models (ranging from $\frac{1}{2}$ " to $10\frac{3}{4}$ " ID) will do the job. Contact us and we will send you engineering data.

PEARSON ELECTRONICS INC

4007 Transport St., Palo Alto, California 94303 Telephone (415) 326-7285

Circle No. 12 on Reader Service Card
PHYSICS TODAY / JUNE 1972 1: