we hear that

stitute of Technology. Other new appointments include Don Taylor, from the Steward Observatory at the University of Arizona, as associate professor and Roger Kirby, from the University of Illinois, as assistant professor. Promoted to associate professor was Robert J. Hardy.

Sandia Laboratories has promoted Jim Powell to supervisor of the laser plasma-physics division.

L. G. Polgar has returned from a year's postdoctoral appointment in the low-temperature group at the Eindhoven

University of Technology to join The Research Corporation of New England as a research scientist in the environmental-sciences division.

At the University of South Florida Stanley R. Deans has been promoted to associate professor, and Robert Gilmore, formerly of Massachusetts Institute of Technology, has been appointed assistant professor.

Lars Onsager, the winner of the 1968 Nobel Prize in Chemistry, will leave Yale University in September to join the University of Miami Center for Theoretical Studies as Distinguished University Professor.

NEW PAR[™] LIGHT CHOPPER

5 Hz to 5.5 kHz

obituaries

Maria Goeppert Mayer

Maria Goeppert Mayer, 1963 Nobel Prize laureate, died on 20 February. Although her health had been impaired for some time, the news of her death was a shock to her many colleagues and friends, close and more distant. Her modesty, unpretentiousness, charming personality and the sincerity of her interest in her subjects of study endeared her to all.

Mayer was descended from a long line of German scholars; her father was professor of pediatrics at the University of Göttingen. She also spent her student years at the University of Göttingen, with the exception of one year's study in Cambridge, UK. As a student she was popular with teachers and students alike. She also met Joseph Mayer in Göttingen and married him in 1930, the same year she took her PhD degree with Max Born. In 1930, the couple moved to Johns Hopkins University; because of the nepotism regulations of that university, and since her husband was a member of the chemistry department, she was a "volunteer" in the physics department there. The couple moved to Columbia University in 1939 (where similar nepotism rules were in effect). While at Columbia she also taught at Sarah Lawrence College, and during the war she worked on the nuclear-energy project. After the war the Mayers moved to the University of Chicago, and she made a deep imprint on the physics department of that institution as well as on the Argonne National Laboratory where she held the title of senior physicist. It was during this period that she created the shell model for nuclei (independently but almost simultaneously with J. Hans D. Jensen of Heidelberg). In 1960 the couple moved from Chicago to the University of California at San Diego. She was professor in the physics department; her husband, professor of chemistry.

Mayer's scientific work extended over several areas, all of which she contributed to not only by means of origi-

MAYER

nal ideas but also by the lucidity of her exposition and the clarity of the articles (and books) she authored or coauthored. Her first paper, on the probability of the emission of two light quanta in a single atomic transition, is a masterpiece of clarity and concreteness. From the quantum theory of

FEATURES:

- · Broad frequency range
- · Brushless DC motor to minimize RFI
- Manual or voltage-controlled frequency selection
- Minimal chopper heat output
- Special mounting minimizes vibration
- Provides reference signal for lock-in amplifiers or for synchronizing other systems

If your experiment requires light modulation and you operate at more than one frequency or want to vary the operating frequency during your experiment, have a look at the new PAR™ Model 191 Variable Speed Light Chopper. It provides long, virtually maintenance free service and offers design features which help minimize the common sources of error in light measurements. Call or write now for a free no-obligation demonstration in your laboratory. Price of the 191 is \$1195. Blade cover is \$50 additional.

If you don't need a variable frequency chopper, we recommend our Model 125 which offers a broad selection of fixed frequencies between 2.1 Hz and 2 kHz and is priced at only \$575.

Call or write now for complete information. Princeton Applied Research Corporation, P.O. Box 2565, Princeton, New Jersey 08540. (609) 452-2111. Telex: 84-3409.

PRINCETON APPLIED RESEARCH CORPORATION

202

Circle No. 48 on Reader Service Card

"plug-in, fine-tune and forget", laboratory cryogenic

For spectroscopy, X-ray diffraction, etc. HELI-TRAN LT-3-110 system gives you conductive cooling of samples to any temperature from ambient all the way down to 2°K.

A flexible, liquid helium transfer line delivers cooling from a storage dewar to the sample head. Sample can be held in any orientation.

Temperature stability is ±0.01°K from 2°K to 20°K, ± 0.1 °K from 20°K to 77°K, and ± 0.3 °K from 77°K to 300°K. Cryogen consumption is typically 0.75 liter/hour at 4.2°K. Either manual or automatic control.

> HELI-TRAN LT-3-110. with manual control: \$2,950 (other options available)

For magnetic resonance. HELI-TRAN LTD-3-110 system was specially developed for magnetic resonance studies. It gives you direct cooling, by washing samples in liquid or gaseous helium metered through the flexible, liquid helium transfer line, from ambient down to 4.2°K. Samples can be solid, in capillaries, in powder form, in solution, or in any other form.

Temperature stability is ± 0.01 °K in the liquid region, $\pm 1\%$ (of absolute temperature) in the gaseous region. Cryogen consumption is also typically 0.75 liter/hour at 4.2°K. Either manual or automatic control.

IR 100 NEW PRODUCT COMPETITION 1971 Competition Winner HELI-TRAN LTD-3-110, with manual control: \$3,250 (other options available)

For more information about HELI-TRAN cryogenic refrigeration systems, or other cryogenic refrigeration systems from Air Products, call Air Products at (215) 395-8355. Or write: Advanced Products Department, Air Products and Chemicals, Inc., Allentown, Pa. 18105.

Circle No. 49 on Reader Service Card

SPECTRUM ANALYZERS/ DIGITAL INTEGRATORS

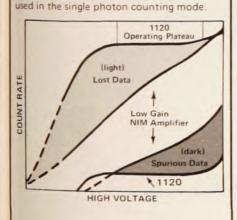
An important feature of our totally new line of 200 and 400 line Analyzers/Integrators is a digital bin marker which provides accurate readout of amplitude and frequency information.

If you're studying complex vibration problems, machinery noise, medical and speech analysis, sonar echoes, acoustics...SAICOR has the Analyzer for you.

Compare our 200 and 400 line analyzers and 200 and 400 line analyzer/integrators to all others, including 1/3 octave systems—it's your best buy! Only SAICOR builds their Spectrum Analyzers and Digital Integrators in one unit.

Write for Bulletins TB-11 "Real Time-Time Compression Spectrum Analysis"; TB-15 "Calibrated PSD Measurements" and information on Correlation & Probability Analyzers.

SIGNAL ANALYSIS INDUSTRIES CORP.


595 Old Willets Path, Hauppauge New York 11787 ■ (516) 234-5700

Circle No. 50 on Reader Service Card

SSRI model 1120 amplifier discriminator

Totally different from nuclear instrument modules, SSRI's Model 1120 counts all photoelectrons. Attempts to maximize S/N Ratio with NIM Modules invariably leads to loss of quantum efficiency (see chart). If results from your present photon counting equipment are unsatisfactory, we'll bring our Model 1120 to your laboratory for a performance comparison with your photomultiplier or electron multiplier. Superbly designed for high speed, high gain, low noise amplification and fast discrimination, our Model 1120 will improve your multiplier tube's performance when

INSTRUMENTS CO.

subsidiary of Princeton Applied Research Core

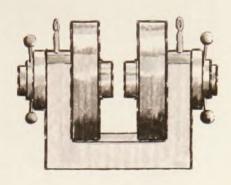
1001 colorado avenue, santa monica, california 90401

(213) 451-8701 cable PHOTON

we hear that

electromagnetic transitions, her attention soon turned to physical chemistry, and she wrote several important papers partly on molecular and partly on solid-state physics. Many if not most of these articles were written in collaboration, several of them with Karl F. Herzfeld and a much quoted one on the excited states of the benzene molecule in collaboration with A. L. Sklar. The fine book on statistical mechanics, written by the Mayer couple, also originated in this period.

Because of the secrecy surrounding the work on nuclear energy, very little was published during the period of her work at Columbia and the SAM laboratories. In Chicago, Mayer's interest soon turned to nuclear physics; her first article on the subject, in collaboration with Robert G. Sachs, is on a subject that remains puzzling to this day-the binding energy of H₃. Her attention soon focused, however, on heavier nuclei, and she proposed the spin-orbit coupling shell model which brought her, in 1963, the Nobel Prize. Her work, however, continued unabated after this discovery, and she wrote more than a dozen articles on nuclear physics-mostly on problems of shell theory and of beta decay. Throughout the years she was also an avid gardener, and her collection of orchids won much admiration.


Maria G. Mayer was the recipient of many honors. In addition to the Nobel Prize mentioned before, she had half a dozen honorary degrees, was a member of the National Academy of Sciences, the Academy of Heidelberg, the American Academy of Arts and Sciences and was also, of course, a fellow of the American Physical Society. I had the impression, nevertheless, that she treasured most the friendship of her colleagues, associates and other physicists.

EUGENE P. WIGNER Louisiana State University

William Lynch

William Lynch, professor emeritus of Fordham University, died on 15 February at the age of 79.

An authority on deep-focus earth-quakes and the analysis of earth-quake waves, Lynch was associated with Fordham from 1937 until his retirement in 1961. At Fordham he also served as assistant director of the seismological laboratory. After his retirement he taught at Mount St. Vincent College for six years. Before coming to Fordham, Lynch had taught at New York University, from which he had received his BA, MS and PhD degrees:

The small magnet with big performance

Varian's V-4005 precision laboratory electromagnet stands alone among 4-inch magnets.

The C-frame V-4005 is built by the best magnet craftsmen in the business to the same high quality as Varian's large research magnets. This assures you of:

- * A precision air gap continuously adjustable from 0 to 4.3 inches, and accessible for easy use.
- * Field intensities unmatched by any other 4-inch magnet.
- ★ The only 4-inch magnet to offer an optional field regulated power supply that uses the same Fieldial™ Hall effect regulator as Varian's larger magnets.
- ★ A wide selection of pole caps, including constant force caps for magnetic susceptibility experiments.
- ★ In sum, an ideal magnet for general laboratory and classroom use, as well as Hall effect, susceptibility, Zeeman effect, and basic NMR and EPR studies.

You can buy other small magnets for less money, but none whose performance compares to that of the V-4005.

For more information or a quote, write Varian, Analytical Instrument Division, 611 Hansen Way, Palo Alto, California 94303.

varian analytical instrument division