The Discovery of Nuclear Fission: A Documentary History

By H. G. Graetzer, D. L. Anderson 120 pp. Van Nostrand Reinhold, New York, 1971. \$2.95

The editors, both physics professors with scholarly reputations in the history of their science, have gathered together 30 key papers, reports and excerpts centering on the discovery of nuclear fission by Otto Hahn and Fritz Strassmann in late 1938, and its interpretation by Lise Meitner and Otto Frisch. This story begins with the work of Enrico Fermi, particularly his production of what were believed to be transuranium elements. Almost alone, Ida Noddack questioned whether element 93 was, indeed, being formed, urging that all other elements first be eliminated from consideration. Hahn, the most experienced radiochemist in the world, became intensely interested in the several activities caused by this neutron bombardment of uranium and, with Meitner and Strassmann, spent about three years trying to establish their decay sequences, half-lives, and chemical properties. Then, in 1937, Irène Joliot-Curie and Paul Savitch announced a 3.5-hour activity that chemically seemed to resemble lanthanum. When Hahn's group looked at this substance they found a number of constituents, including some that precipitated with barium, which was the standard carrier for radium. But with no observed alphadecay, how could a neutron cause uranium (element 92) to transmute to radium (88)? Further tests convinced them that an even greater jump in the periodic table had occurred, for the activities in question remained with the barium when that element was separated from radium. The explanation, given in the dark days before World War II, was that the uranium nucleus had split, or fissioned, into roughly equal parts, a process considered by Rutherford decades earlier, but never observed and consequently forgotten.

At this time, however, the process could hardly be forgotten, as mass was converted into energy in amounts fantastic when compared with chemical reactions. Fission was confirmed and its mechanics speculated upon by such as Frisch, Edwin McMillan, Philip Abelson, and Niels Bohr in the first months of 1939. Next, energy distributions, cross sections, and other features of the process were studied, but none of more significance than the number of neutrons released in fission. The work of Frederic Joliot and his colleagues (and others elsewhere) showed that enough neutrons were emitted to

lved tices

375 Lake Avenue Bristol, Connecticut 06010 **Carson Laboratories** 203-582-9528

ion lasers from

carson your guarantee of excellence

At Carson our experience with ion lasers dates back to 1966 when we delivered the first BeO ion laser; this was followed in 1968 by the first four-color (Ar/Kr) ion laser; then in 1970 Carson offered the first separately available BeO plasma tube package;

and in 1971 carson was first again with the twin-tube ion laser.

But being first is not our only distinction —
it just gave us a head start in developing the
widest and most advanced line of ion lasers
anywhere — and all models are competitively
priced. Just look at the number of models
to fill your every need.

SERIES 100 THREE MODELS - 2-watt Argon and 1-watt mixed gas and Krypton units

SERIES 200 FOUR MODELS – 5 watt Argon and 2-watt mixed gas and Krypton units

SERIES 600 INTERCHANGEABLE Ar/Kr-For users who require the flexibility of gas interchange

SERIES 700 EIGHTEEN MODELS — High stability series; models available from 1 to 15 watts

The 700 Series includes the new twin ion laser systems, which incorporate the best in versatility, performance, and reliability.

Fill one plasma tube with Argon and the other with Krypton, or fill both with the same gas.

GET TWO LASERS IN ONE PACKAGE.

But don't forget Carson's superior miniaturized power supplies; their modular construction provides the add-on capability you need for your expanding laser requirements.

And then there are the ACCESSORIES — Argon Laser Discharge Tubes Intracavity Etalons for Mode Selection Fluorescence Suppressors • Optical Power Meters • Optical Feedback Reg — ulators • Ultraviolet Options • Optical Couplers (for Twin-Tube Models)

There is a lot more to Carson Laboratories!

If you want to know more about our products and capabilities, call or write to:

Carson Laboratories 375 Lake Avenue Bristol, Connecticut 06010

Circle No. 30 on Reader Service Card

Develco superconducting instruments

a first of a kind company and four first of a kind products

FIRST IN SUPERCONDUCTING PRODUCTS AND SYSTEMS for use in measurements, testing, calibration, and investigations in a multitude of ElectroMAGNETIC areas. Develor's achievements in products and systems during the past 18 months include:

First thin film superconducting magnetometer
First and largest superconducting magnetic shield
First superconducting magnetic test system
with internal superconducting magnetometer
First superconducting gradiometer

SUPERCONDUCTING MAGNETOMETER uses a thin film sensor to detect changes in magnetic fields of 1x10⁻⁹ gauss. Can be used as a general purpose, extremely sensitive magnetometer, picovoltmeter, nanoammeter, or as a low impedance bridge for resistance or inductance measurements. Insensitive to shock, vibration, or electrical discharges. Frequency response 0-200 Hz; Dynamic Range 10⁻³ to 10⁻⁹ gauss.

Circle No. 31 on Reader Service Card

SUPERCONDUCTING MAGNETIC SHIELDS

use unique approach to magnetic shielding to provide ultra-stable test environment with room temperature access and shielding factors exceeding 10⁵. Designed for use in testing magnetometers in low noise environments in the plant, laboratory or operational locations. Remanent magnetic field of a typical shield — less than 1.5x10⁻⁵ Oe.

Circle No. 32 on Reader Service Card

SUPERCONDUCTING MAGNETIC TEST SYSTEMS are passive, simple and economic systems designed for ultrasensitive measurements of low level magnetic signals. Rugged superconducting shield contains one-, two-, or three-axis superconducting magnetometers for very rapid and accurate measurements of magnetic sensors, solid state samples, magnets, electrical components, biological samples, etc. Digital display of measured values with digital and analog outputs. Test regions available in 2½ to 9 inch diameters. Dynamic ranges of 5x10⁻³ to 5x10⁻⁸ emu.

Circle No. 33 on Reader Service Card

SUPERCONDUCTING GRADIOMETERS, which use superconducting flux transfer circuits and thin film superconducting magnetometers, provide the capability to make extremely sensitive magnetic field gradient measurements ($\sim 10^{-11}$ gauss/cm noise levels) with short baselines (~ 30 cm). Multi-axis gradiometers can also be used for magnetic surveys, signal studies, magnetocardiograms, etc. in unshielded environments.

Circle No. 34 on Reader Service Card

DEVELCO, INC.
Superconducting Instrument Division
530 Logue Avenue, Mountain View, California 94040 • (415) 969-1600

The first nuclear reactor. This is the only photograph taken during the construction of the reactor at Stagg Field, University of Chicago. Taken in November, 1942, it shows the 19th layer of graphite blocks almost covering the 18th, which contained uranium. A total of 57 layers were eventually added before the pile became operational. (Photo from the University of Chicago Archives, courtesy of the Niels Bohr Library.)

fission other uranium nuclei, in succession, providing that the neutrons were not captured by impurities or lost in other ways. This trail led in 1942 to Fermi's production of a controlled chain reaction.

By this time, of course, the world was at war and Fermi's reactor was the prototype of those used to produce plutonium for the Nagasaki bomb. The editors do not treat the Manhattan Project as such, but span it by including Albert Einstein's famous letter of 1939 to President Roosevelt and General Thomas Farrell's description of the Alamogordo test in 1945. They are somewhat more interested in the political and moral questions, for they reprint the Franck Report, recommending against use of the atomic bomb, Arthur Compton and Farrington Daniel's poll of the Chicago scientists on this question, and Secretary of War Henry Stimson's analysis of the decision to drop these new weapons on Japan.

With judicious use of introductory and connecting text, these numerous topics, represented by the original scientific papers or other appropriate documents, are fashioned into a continuous story of great interest and excitement. Where necessary, translations into English have been made. The volume, which is designed for college-level students, is both an excellent historical reference work and a valuable teaching tool, containing as it does a case study of scientific progress, with its false turnings, leading to a major discovery and its remarkable application. Its coverage in good part may be summarized by the verse Otto Hahn was fond of quoting:

> To split the mighty atom All mankind was intent. Now any day the atom may Return the compliment.

> > LAWRENCE BADASH University of California, Santa Barbara

Helium 4

By Z. M. Galasiewicz 338 pp. Pergamon, New York, 1971. \$9.50

The modern science of low-temperature physics dates from the liquefaction of helium in 1908. Since that time, the behavior of liquid helium has been widely studied owing both to its inherent fascination and to its nearly universal role as a cryogenic substance. This intensive effort has yielded successful phenomenological descriptions that fit the various experimental data. The theoretical picture remains incomplete, however, for it is still impossible to perform quantitative calculations from first principles. Consequently, the study of liquid helium continues

It is therefore appropriate that Pergamon Press's Selected Readings in Physics series has issued a new volume Helium 4, edited by Zygmunt Galasiewicz. It contains an introductory essay of about 50 pages, followed by 19 basic papers (12 experimental and 7 theoretical) that have been wholly reset in a uniform format. As stated on the back cover, this series is planned for an undergraduate or beginning graduate student. In general, Helium 4 keeps to this level, but it also contains some quite technical material on the derivation of the two-fluid model and the kinetic coefficients. Part of this last material summarizes Galasiewicz's earlier book Superconductivity and Quantum Fluids (Pergamon Press, 1970).

The introduction reports the present status of superfluid helium, with emphasis on the theoretical developments of Lev Landau, Nikolai Bogoliubov, and Richard Feynman. Regrettably, the text is marred by numerous misprints, including a confusion between h and h. Thus the quoted expressions

Optoelectronics School and Conference presents the technology of light emitting materials and devices.

Not since the unparalled growth of the silicon technology for semiconductors of the late 1950's has there been such an immediate and total commitment made to a technology requiring the development of new materials and processes,

The rapid and seemingly unlimited growth of optoelectronics now demands the dissemination of the voluminous material and process data acquired through intensive research.

Consequently, Materials Research Corporation has gathered the leading technologists to impart to you their knowledge of this important subject.

This concise, yet complete, presentation of the facts make this required education and exposure for those contemplating entry and those newly entered into the field of optoelectronics.

Features of the Course

The 3-day program is (to the best of our knowledge) the most complete ever offered in this particular field. Its overall coverage is broad, but its treatment of each individual subject is detailed. All sides of the problem are presented from crystal growth and liquid phase epitaxial techniques to the future of optoelectronic devices. In short, the Course is designed to provide you with a working knowledge of optoelectronics.

We have gathered together a group of men who are experienced specialists in optoelectronics - and who have the unique ability to teach their specialties.

Speakers Will Include:

Dr. R. Burmeister Hewlett-Packard Corp. Palo Alto, California

Dr. Robert Haisty Texas Instruments, Inc. Dallas, Texas

Dr. L.A. Cambey Materials Research Corp. Motorola, Inc. Orangeburg, New York

Dr. J.J. Tietjen David Sarnoff Research Labs RCA Corp. Princeton, N.J.

Mr. J. Wenckus Arthur D. Little, Inc. Cambridge, Mass.

Dr. S. Weinig Materials Research Corp. Orangeburg, N.Y.

Dr. Malcom Russ Phoenix, Arizona

Dr. Hans Velleur Bell Telephone Labs Reading, Pa.

And Others

Conference Location

Del Monte Lodge is located on Cali- The registration fee of \$325.00 per fornia's Monterey Peninsula. Its guest person for in-resident conferees inrooms look out across the famed 18th green at Pebble Beach, to Carmel Bay. It's just a few miles west of California's major North-South highway and is convenient to all West Coast cities. Both United and Pacific airlines service the Monterey Airport.

Registration

cludes all meals, refreshments, double occupancy accommodations, ference and school transactions. Plan now to set aside May 14 through 16th 1972 so that you may attend this important and unusual school. Just call or write to reserve your place in the growing optoelectronic industry.

School and Conference . Materials Research Corp. Orangeburg, New York 10962 • 914 - 359-4200