nuclear data used to illustrate the theory presented. Frequently, only one or two examples are given to demonstrate an important physical theorem. An extensively organized presentation of the actual data would give the reader a chance to judge for himself the validity of the theoretical arguments. Although the collective nuclear model has certainly come of age, it is not yet so well understood that we can afford to forget the data and references on which it is based. The basic framework for a firstclass reference volume is present in this text, and it would be a pity not to utilize it as such in the future.

A less important omission (but still worthy of note) is the SU(3) description for collective nuclei. Rowe argues that this approach is "not really rotational." This is true, but SU(3) can certainly be used to describe certain rotational nuclei. Personally, I would have liked to have seen a chapter of the book devoted to this subject.

(un

On:

ks.

) par

ely pa

ad dela

y. I

lopme

ive I

ge log-

15 18

prose

of dec

he and dy soli el. Ma

gems, I in the

e most

ubject I

d dan

suited

icists Y

ial for 1

evel 154

aduates

d course

Jdiment.

ics. 8

ds are of

pendices

ointed

lo atter

eference

d that

this it

ithor of

Similar

lection

There are a few other omissions, such as the description of the fission process (as the author notes in the preface). Several topics (notably: Hartree-Fock calculations in the 2sld-shell, the Peierls-Yoccoz method, and the work of Abe Klein and his collaborators) are only given very brief attention. The emphasis in the book is definitely centered about the author's own research interests. Thus, the discussion of the "equations of motion" approach is one of the clearest treatments of this topic to be found in the literature. This more than makes up for the omissions listed above. After all, any expert is bound to emphasize his own speciality.

In summary, Rowe has written a very pedagogical book of great value to physicists encountering the concepts of collective nuclear motion for the first time. The framework for a primary reference volume in nuclear physics is present, and could be exploited by expanding the data presentation and including an extensive bibliography.

> Paul Goldhammer University of Kansas, Lawrence

Introduction to Electrodynamics and Radiation

W. T. Grandy, ed. 284 pp. Academic, New York, 1970. \$12.50

Despite some 40 years of intensive research in nuclear physics (strong and weak interactions) and 55 years of gravitation theory, there is little doubt that of the three fundamental interactions the electromagnetic ones are by far the best understood. Their application in almost every aspect of our highly technological civilization has become common knowledge. The study of the foundations of electromagnetic theory is therefore a standard part of the graduate education of every physicist. This includes classical as well as quantum electrodynamics. The difficulty here is that the latter seems relatively inaccessible, especially to those who do not wish to delve into relativistic quantum field theory.

Here is an attempt at a solution of this difficulty, and I might add a successful one. This book is written for the first- or second-year graduate student who has had at least one graduate semester each of quantum mechanics and of electrodynamics but who has not had much more mathematics than these courses ordinarily require.

Of the 16 chapters half are devoted to classical electrodynamics (mostly relativistic), the other half to quantum electrodynamics of which only the last chapter is relativistic. The first half includes radiation theory and a fine introduction to the classical theory of charged particles. The treatment here is much more complete than in most books on electrodynamics and clarifies many misconceptions still to be found in the current research journals.

In the second half, the author succeeds in showing a great deal of the physics (including comparisons with experiments) and of the computational techniques (Feynman diagrams and radiative corrections) of quantum electrodynamics to a reader with only nonrelativistic quantum mechanics as background. Extensive references to more advanced texts and to original articles are provided.

This text is an ambitious undertaking. It covers a great deal of ground in only 270 pages. Of course, the reader must also pay for it; he is on his own in finding his way between some of the equations, because no step-by-step derivations are given. The average student on this level may not always have the mathematical facility to fill in the gaps; at times he may have to consult some of the various references; this is especially important for the classical theory where a working knowledge is the desirable aim. The exercises and numerous problems in each chapter are posed with this end in mind. In any case, the conscientious teacher using this text must be alert to these difficul-

The author, of necessity, had to make a selection of topics; this is always a rather subjective matter. For example, arguments in the preface to the contrary, I would have preferred one or two other subjects in place of a chapter on Riemannian geometry in a book entirely devoted to flat-space physics.

Nevertheless, this concisely written but utterly readable book is a success in its unorthodox task: It gives a wellrounded introduction to electromag-

STATISTICAL PROPERTIES OF NUCLEI

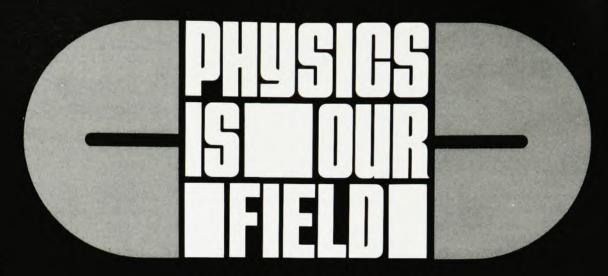
Edited by Jagadish B. Garg, State University of New York at Albany

This authoritative volume presents the current status of the theoretical and experimental aspects of the statistical properties of nuclei, providing much needed reviews and frank discussions by experts working in the field. Proceedings of the International Conference on Statistical Properties of Nuclei held at Albany, N. Y., August 23-27, 1971.

CONTENTS: Analysis of resonance reaction experiments . Statistics of resonance parameters (part I) . Statistics resonance parameters (part II) . Average resonance parameters Nuclear level density • Decay of the compound nucleus . Limitations of the compound nucleus.

APPROX. 620 PAGES JANUARY 1972 ISBN 0-306-30576-3 \$32.50

THERMAL EXPANSION


By Bernard Yates, University of Salford, Lancashire, England

This comprehensive volume completes a summary of the physical properties required to define the Grüneisen parameter. Taken in isolation, the fundamental information conveved about the vibrations of atoms and molecules in solids by thermal expansion is much less than that given by considering the phenomenon in association with specific heat and elastic constants. Thus the treatment of thermal expansion is approached via the more familiar subject of specific heat followed by a consideration of elastic constants.

APPROX. 113 PAGES FEBRUARY 1972 ISBN 0-306-30550-X

plenum press/consultants bureau

Divisions of Plenum Publishing Corporat 227 W. 17th ST., NEW YORK, NEW YORK 10011

and we have the books to prove it.

INTRODUCTION TO HIGH ENERGY PHYSICS

by D. H. Perkins, University of Oxford, England

One of a series for a curriculum in modern physics, this senior-graduate level text provides a broad coverage of particle physics, stressing that the frontiers of fundamental physics today rest in the depths of space and in the subnuclear world of elementary particles. The treatment is informal and empirical, with emphasis on experiments and techniques. Exercises and bibliographies are included with each chapter.

February 1972

INTRODUCTION TO THE PRINCIPLES OF ELECTROMAGNETISM

by Walter Hauser, Northeastern University

Designed for senior and first-year graduate courses, this text is at a sufficiently sophisticated level to help the serious student of physics, electrical engineering, and physical chemistry learn the fundamentals of electromagnetism and reach the point where he can appreciate more advanced textbooks and original literature.

623 pp, 225 illus (1971) \$14.95

INTRODUCTION TO ATOMIC PHYSICS

By Harald A. Enge, *Massachusetts Institute of Technology*, M. Russell Wehr, *Drexel University*, and James A. Richards, *State University of New York at Delhi*

Also in the modern physics series, this onesemester, junior-level text develops a solid foundation in understanding modern physics, following the historical-chronological development of atomic physics to the more difficult areas of wave mechanics and atomic nuclear theory. A chapter on solid state physics and an extensive appendix on relativity are also included.

February 1972

133

CO By B

In hi Coher a per

physio school riculu

attem

gradus

success clear p

IS NOW

V wort

The

wite s

disting

stinet

that the

he has

E Thi

chapter

MECHANICS, THIRD EDITION

by Keith Symon, University of Wisconsin, Madison

This new edition of the most widely used text for intermediate mechanics courses builds on the strengths of the Second Edition. Numerous problem sets, offering a greater range of difficulty, have been added as well as an entirely new chapter on relativistic mechanics. The text is self-contained in its presentation of the mathematics and theory. Both calculus and introductory physics are prerequisite.

639 pp, 168 illus (1971) \$13.75

Addison-Wesley
PUBLISHING COMPANY, INC.
Reading, Massachusetts 01867

THE SIGN OF EXCELLENCE

netic interactions including quantum electrodynamics on a relatively elementary mathematical level. The omission of drudgery of detail, the emphasis on results of the theory and their comparison with experiment, the insistence on presenting criticism and advanced research results even if proofs are beyond the scope of the present book, all this makes for exciting reading and certainly whets the appetite of all those who really want to know.

> F. Rohrlich Syracuse University Syracuse, N.Y.

Concepts of Nuclear Physics

By B. L. Cohen 435 pp. McGraw-Hill, New York, 1971. \$14.95

In his preface to this book Bernard Cohen points out that it is possible for a person to earn a PhD in physics without ever being exposed to nuclear physics. The same is not true of atomic physics where, even on the secondaryschool level, it is part of the science curriculum. He describes the book as an attempt to introduce the same logic into the teaching of an advanced undergraduate or first-year graduate course in nuclear physics as is presently employed in the teaching of atomic physics. It is an attempt that is largely successful. Whether it will make nuclear physics as familiar to undergraduate physics majors as atomic physics is now is an open question. It is certainly worth a try.

The author is eminently qualified to write such a book. He has a long and distinguished career as an experimental nuclear physicist with a very good instinct for key experiments. His research has covered a number of important areas in the field. He admits that the material covered in the book is weighted heavily towards areas in which he has had research experience, and it is. This is, in fact, one weakness of the book. There are a number of important areas in which he has not worked and these are given short shrift indeed.

Early in the book a chapter is devoted to the quantum theory of a particle in a potential well. Although it is assumed that most students taking a course in nuclear physics based on this book will have had a course in modern physics that includes quantum mechanics, for those who have not, this chapter should suffice. On several occasions further on in the text, material is treated in greater depth than can be handled by the quantum theory given in this chapter, but this is always carefully noted and the student can omit these sections without loss of continuity. The remaining material covered includes an excellent chapter on nuclear force, chapters on general nuclear properties, on models

on er-of an ics.

ion lus

-particularly the quasiparticle concept with a good description of energy gap -applied to spherical even-even nuclei and then to the more complicated odd-A nuclei, both spherical and spheroidal, as well as to nuclei possessing permanent deformations. Then follow descriptions of nucleon, beta and gamma emission and then two chapters on nuclear reactions-one devoted to compound nucleus reactions and the other to direct reactions. Both of these chapters are done very well. In addition, there is a chapter devoted to experimental methods in nuclear physics and another to applications of nuclear phys-

No important topic in the field is excluded but, as mentioned above, certain aspects of nuclear structure physics are given rather cursory treatment. For example, only two pages of text are devoted to gamma-ray angular correlation studies, one page to the Dopplershift attenuation method of measuring nuclear lifetimes and one page to Coulomb excitation. Vast amounts of information about nuclear structure have come from applications of these techniques, and to devote such little attention to them is peculiar.

Aside from this, however, the book is a valuable and unique addition to the literature on nuclear-structure physics. It is well written and provides a lucid description of nuclear phenomena at a level suitable for advanced undergraduate or first-year graduate students.

> H. E. Grove University of Rochester

Quantum Physics

By E. H. Wichmann 423 pp. McGraw-Hill, New York, 1970. \$6.95

Eyvind Wichmann's book, which is Volume 4 of the five-volume Berkeley Introductory Physics series, represents a distinctive solution to the problem of creating an intellectually stimulating introductory course in "modern physics." The text will be enjoyable reading for any instructor, and should fascinate a student who is willing to shift back and forth rapidly from trusting acceptance to critical thinking as Wichmann takes him on a grand tour through quantum physics.

The tour covers many of the expected points, including such standard topics as the discovery and properties of photons, energy levels and atomic spectra, wave properties of material particles, Schrödinger's equation including applications to barrier penetration and eigenvalue problems and basic properties of nuclei and elementary particles. But the approach is fresh and unconventional, illuminated by Wichmann's enthusiasm and sophistication.

IT'S HERE . . .

. . the 3He/4He Dilution Refrigerator system by Cryogenic Associates . . . tested, proven and licensed* . . a superior performer in the field.

The complete modular system delivers continuous externally measured sample temperatures as low as 0.020° K. Heat extraction capability (also measured externally) is as large as 1000 erg/sec. at 0.1°K and 120 erg/sec. at 0.040° K.

There's more! The versatility of design allows individual components to be matched to specific needs. Several optional devices make it even more interesting.

Complete specifications are yours on request. One look and you'll easily determine that Cryogenic Associates' Dilution Refrigerator is the answer for Mossbauer Effect Spectroscopy/Polarized Targets for Nuclear and Elementary Particle Physics/Quantum Liquids/Superconductivity/Thermal Transport Properties of Solids/Kondo Effect/ Nuclear Demagnetization.

CRYOGENIC **ASSOCIATES**

". . . for the finest in Cryogenic Systems".

1718 North Luett Avenue Indianapolis, Indiana 46222 Phone: (317) 632-2515

*Licensed under U.S. Pat. No. 3,195,322

SEE US AT BOOTH #239 Circle No. 50 on Reader Service Card PHYSICS TODAY / JANUARY 1972