a course in environmental physics in which he taught business majors to think quantitatively about energy sources, pollution, rapid transit and ecology. He also created a course in the "physics of seeing." He felt it a moral obligation of the university to interact with the surrounding com-

JENSEN

munity, and established a weekend program whereby black high-school students learned the physics of radios while building them. A true humanitarian and active anti-militarist, he terminated his Department of Defense grants a year ago.

Tony Jensen had the gift of making science a human and exciting experience. He will be easy to remember.

A. J. Heeger, J. A. Cohen, P. M. Chaikin University of Pennsylvania

James E. McDonald

A senior physicist at the University of Arizona's Institute of Atmospheric Physics, James E. McDonald, died on 13 June.

McDonald, who was 51 years old and held degrees in chemistry and meteorology as well as in physics, was a specialist in cloud physics and had also contributed to weather-modification research. A member of the National Academy of Sciences, he was a proponent of the possibility that unidentified flying objects might be controlled from beyond the earth. In July 1968 Mc-Donald tried to convince the House Committee on Space and Astronautics that a serious study of "flying saucers" should be conducted. He accused the Air Force, which had commissioned a study of UFO's, of being "blissfully unaware" of the seriousness of the situation, and he later challenged the Air Force's Condon Report, in which most UFO sightings were linked to satellites, weather balloons, clouds, birds and other explainable phenomena.

At a private hearing of the Department of Transportation last year and again this year at a House Appropriations Committee hearing, he testified that a full fleet of supersonic transport planes would reduce the protective layer of ozone in the atmosphere that screens out some of the harmful ultraviolet rays of the sun. Although some members of the House Committee doubted his report, a National Cancer Institute specialist later concurred with McDonald, saying that McDonald's estimate of the impact of supersonic planes on skin cancer was, if anything, too modest.

Igor Tamm

Igor Tamm, head of the theoretical department of the P. N. Lebedev Physical Institute in Moscow, USSR and winner of the 1958 Nobel Prize for Physics, died on 12 April at the age of 75.

Among Tamm's many important contributions to theoretical physics was the theory of light scattering in crystals, which first demonstrated the fruitfulness of the conception of sound quanta (or "phonons," a term suggested by Tamm's friend and colleague Jacob Frenkel). In 1930 Tamm also proposed the theory of light scattering by free electrons in which he was the first to obtain rigorously the Klein-Nishina formula. He further showed that the scattering of even very soft quanta cannot be calculated correctly if Dirac's negative-energy states of the electron are neglected. And Tamm's work on the photoeffect of metals, formulated with Shubin in 1931, remains a basic theory even today.

Another of Tamm's important contributions was the theory of "Tamm's levels" of electrons in solid-state physics. He found that the particles in the Tamm levels are bound to the surface of the body and can move only along the surface. Explanation of various surface and contact properties of solid bodies is impossible without taking the Tamm states into account.

In the late 1950's Tamm performed what is perhaps considered to be his most important work when, together with Ilya Frank, he formulated a theory of the Cerenkov effect, discovered by Pavel Cerenkov in 1934.

Tamm made further advancements in physics with his prediction of the existence of the magnetic moment of neutrons and the correct prediction of its sign and his theory of controlled thermonuclear reactions, formulated with Andrei Sakharov.

In many cases Tamm's work led others to further important theoretical developments. The best example is his beta-theory of nuclear forces (1934)

Gaertner application flexibility in instruments for education and research

Three flat-bed optical/instrument benches. Rugged, compact, rectangular benches that offer great versatility for demonstrations, experiments, and research using a wide variety of optical, electronic and mechanical instrumentation systems. Applications range from materials research to instrument design to holographic and microwave experimentation. Gaertner also offers scores of system component assemblies and accessories, including mounting bases with instant on/off magnetic feature. Instrument components can be interchangeably used on all three benches.

Permits complete set-up flexibility on any lateral/longitudinal axes. Top is tough satin-finished stainless steel with smooth surface. Shown with optional antivibration air-suspension system and frame. *Work surface, 204 x 57cm.

"One-Meter" Flat-Bed Bench**

Has non-glare stainless steel top etched with letter/number coordinate grids. The 60mm squares are subdivided into 20mm

and 2 mm squares for positioning of instrument components. Shown with

optional anti-vibration air-suspension system and frame. * *Work surface, 104 x 57cm.

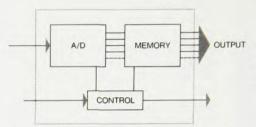
Rail-Type Flat-Bed Bench
Has nine parallel,
uniformly
spaced coplanar rails
permitting
optical folding to equivalent length

of 9 meters within less than 1-square-meter area. Includes anti-vibration air-suspension system and frame; rail-bed component interchangeable with flat-bed.

0-216

GAERTNER SCIENTIFIC CORPORATION

1234B Wrightwood Ave., Chicago, III. 60614 Phone: 312 281-5335


Circle No. 35 on Reader Service Card

PHYSICS TODAY / SEPTEMBER 1971

FAST DATA ACQUISITION

with a Transient Recorder

PULSED NMR
SHOCK TUBE
FAST REACTION CHEMISTRY
NUCLEAR EFFECT
VIBRATION
POWER LINE TRANSIENTS
SOUND

CRT DISPLAY
COMPUTER ANALYSIS
STRIP CHART RECORDER

You can stop a fast signal, like a nuclear pulse, sonic boom, or power line transient, and store it digitally in a Transient Recorder—at analog-to-digital conversion rates up to 10 MHz per sample with six bit resolution.

You can even record the information preceding your trigger signal so that you can study conditions leading up to the trigger point— a unique feature called Pretrigger Recording. Now you can easily record, observe, and process fast, single-shot or repetitive signals or pulses!

Then you can transfer the recorded data digitally to a computer or to other digital processors or

biomation

Palo Alto, California

Circle No. 36 on Reader Service Card

peripherals. Or, you can present the analog equivalent on a CRT display. Or make a permanent record on a strip chart or Y-T recorder.

Easy operation results from the combination of complete triggering and control circuits, and input amplifiers with high input impedance.

Learn how they can help in your application. Write or call Biomation, Inc., 1070 East Meadow Circle, Palo Alto, California 94303 (415) 321-9710.

MODEL	A/D RATE	A/D RESOLUTION	MEMORY LENGTH	PRICE
610B	10 MHz	6 bit	256 word	\$1850.00
802	2 MHz	8 bit	1024 word	\$2950.00

ПЕРЕВОДЧИКИ!

FOR RUSSIAN-ENGLISH SCIENTIFIC AND TECHNICAL TRANSLATIONS

You can follow the latest Soviet research in your field, and supplement your income, by translating in your home on a free-lance basis. If you have a native command of English, a good knowledge of Russian, and experience or academic training in a scientific or technical discipline, you may be qualified for our translation program, Immediate openings are available in physics, materials science, geology, civil engineering, and other fields. With our constantly expanding program, we can guarantee you a continuous flow of translations in your specialty.

Call or write now for additional information:

TRANSLATIONS ADMINISTRATOR

PLENUM PUBLISHING CORPORATION

227 West 17 Street, New York, N. Y. 10011 212-255-0713, ext. 245

Circle No. 37 on Reader Service Card

Produced in association with the world's top numerical analysts and statisticians.

Proven in benchmark comparisons with other math-stat packages.

Now available at \$720 per year.

Write for IMSL's free benchmark manual or ask someone who uses IMSL — Library 1

MATHEMATICAL

INTERNATIONAL

& LIBRARIES, INC.

STATISTICAL

6200 Hillcroft / Suite 510

Houston, Texas 77036

Phone: (713) 772-1927

Circle No. 38 on Reader Service Card

we hear that

in which the forces inducing beta-decay (that is, interaction through the electron-neutrino field) were assumed to be the forces of nucleon-nucleon interaction. These forces were shown to be very small in comparison with nuclear Several years later Hidekl forces. Yukawa developing Tamm's ideas made the next important step and showed that nuclear forces are due to mesons, not to electrons and neutrinos. However all the later theories of nuclear forces were developing according to the same scheme as Tamm's theory. Tamm himself thought this theory to be one of his greatest achievements. For, as he said about his theory of the Cerenkov effect, "This is not the work for which I would like to get the Nobel Prize."

In his later years Tamm worked on the formulation of the quantum field theory in curved momentum space.

TAMM

His aim was to develop a consistent theory of elementary particles free of divergencies and of other difficulties.

This list of Tamm's achievements, though short and incomplete, indicates the range of Tamm's contributions to theoretical physics. But his scientific accomplishments alone do not fully explain his authority in physics and the love that all his friends and numerous disciples felt toward him. Tamm always met any new idea in physics with enthusiasm and he was unselfishly joyful at every success. His teaching was always inspiring, the discussion of any physical problem with him was fruitful and the use of it went far beyond the framework of the particular problem. He was always kind and friendly and his most critical remarks were taken without offense and stimulated a desire to work

He hated injustice, and if he ran into any examples of undeserved praise or undeserved blame he fought actively for the restoration of the truth. He devoted much of his time and efforts to the fight against a dogmatic approach to biology, and he was enthusiastic about the success in molecular biology (particularly about the deciphering of the genetic code).

During his last years Tamm paid much attention to the problem of peaceful coexistence. He was a member of the Pugwash movement in defense of peace. This activity helped to increase confidence and mutual understanding among scientists from different countries. Tamm had many friends both in the USSR and beyond its borders. In 1928 Tamm visited Paul Ehrenfest in Leyden. Ehrenfest later wrote in a letter to Abram F. Joffe, "I cannot think of anyone better than Igor Tamm as a successor in Leyden when it is time for me to pass away." This phrase expresses the feeling of love and respect felt for Tamm by all who knew him.

> B. Bolotovsky P. N. Lebedev Physical Institute

Arthur Bramley

Arthur Bramley, theoretical and experimental physicist, died 3 June of cancer. He was 70.

Born in the UK, he came to the US in 1919, attended the University of Oregon and received the PhD degree from Princeton in 1924. He held the Jacobus Fellowship there, which is accorded to the highest standing graduate student in the university. For eleven years he then did research in problems of pure physics at the Bartol Research Foundation at Swarthmore.

After a period of collaboration with the Fixed Nitrogen Laboratory and the war department, he worked consecutively at the National Union Radio Corp, Du Mont Laboratories and Republic Aviation. In consulting and other work he subsequently headed his own firm in Falls Church, Va.

Bramley's research, as reported in over 60 papers and demonstrated by 15 patents, dealt with relativity theory, electrodynamics, beta particles, optical characteristics of water, radioactive tracers, thermal diffusion, photoconductive response, electro-luminescent displays and interaction of light with nonlinear media. Certain of his papers were written in collaboration with others, including his physicist wife, the former Jenny E. Rosenthal.

Although he did not engage in formal teaching, a large number of fellow students, colleagues, laboratory associates and others will testify to the invaluable clarification, guidance and stimulation he gave them in understanding and overcoming the physical and technological problems they faced in their own careers.

Henry A. Barton Greensboro, Vermont□

PHOTOMULTIPLIER TUBES

perform best under exceptionally stable operating conditions. And, our thermoelectric PMT cooling chambers are the most convenient way to provide excellent long-term stability with continuous cooling and automatic temperature stabilization. Model TE-102 (air cooled) uses no ice. No liquids, No interruptions.

For lab use, the water-cooled thermoelectric chambers are ideal (TE-104 — end window tubes & TE-109 dormer and side window tubes). All three models provide low light level detection with maximum dark current reduction and continuous, gain-stable, frost-free operation, And, they have interchangeable tube sockets.

For every PMT cooling or non-cooled housing requirement, PFR has an uncommonly good solution.

It is our only business as you'll see in our new 20-page catalog.

PRODUCTS FOR RESEARCH, INC.

78 Holten St. • Danvers, Mass. 01923 (617) 774-3250

Booth #337
EOSD CONFERENCE-EAST
Circle No. 39 on Reader Service Card