Broadband Low Distortion RF Power Amp

- 10 watts output
- Flat response from .05 to 80 MHz

Model RF-805 is a solid-state amplifier with - 30 db harmonic and intermodulation distortion. Gain is 47 db minimum, constant within 1 db for full output with less than 0.1 volt at 50 ohm input.

Tunable 10-500 MHz RF Power Amp

- Up to 8 watts into 50 ohms
- Small and lightweight
- 35 db minimum gain

Model RF-815 is tunable in six bandswitched ranges from 10 to 500 MHz. All solid state except for the one tube output stage, the unit's simple mechanical design makes maintenance easy. Output metering and overload protection are provided.

Applications

Radio Communications • Laser Modulation • Accelerator Driver • NMR • RF Power Calibration • Ultrasonics • Transmitter Driver

RF COMMUNICATIONS, INC.

Electronic Instrumentation Operation 1680 University Avenue Rochester, New York 14610 Telephone: 716-244-5830 TWX: 510-253-7469 A Subsidiary of Harris-Intertype Corporation

Circle No. 24 on Reader Service Card

that in a future edition of this book such examples could be provided, as they would form an invaluable addition.

> Albert V. Crewe Enrico Fermi Institute, The University of Chicago

Historical Studies in the Physical Sciences, Vols. 1, 2

Russell McCormmach, ed.

314 pp., 316 pp. Univ. Pennsylvania Press, Philadelphia, Pa., 1969, 1970. \$8.50 each

The publication of these two volumes marks the coming of age of physics history as a solidly based branch of serious scholarship. For here, in a series of well written essays, are displayed a rich sample of the results of historical scholarship about recent physical science. Don't look here for "the good old days" and "great man" genre of science history. The editor makes it clear in his introduction to the first volume of this annual that it is not his intention to include "heroic biography, the history of chains of discovery, the identification of precursors." Instead (and happily for the reader who expects history of science to be as rich, illuminating and thought provoking as the history of other aspects of culture) the aim is to focus on major issues, and to show how new directions and methods of research can illuminate the internal development of the physical sciences, their connections with other sciences, the institutional and professional environment for scientific work and the cultural and social context in which it was done. The emphasis is on modern physical science (from the 18th century on) where the needs for understanding are so great and the efforts to achieve it have only recently gotten underway. The standards: wide readership and a high level of scholarship. All in all, a tall order for a new field.

The goals of the editor and his confidence that they could be achieved invite admiration mingled with a tinge of skepticism. But the skepticism is eased when one recognizes that the basis for his confidence is "the rapidly growing interest in the history of the modern physical sciences and the increasing sophistication of writing in the field.' The editor is Russell McCormmach, the science historian whose own writings on the history of 19th- and early 20th-century physics have exemplified the standards he hopes to attain in Historical Studies in the Physical Sciences.

How well do the first two volumes meet these standards? The 16 articles probe into the development of physics and physicists from the early 1800's to the mid 1920's. They draw on the published results of scientific work as well

as manuscript sources including personal letters, institutional records and in a few cases, interviews. The essays relate the development of concepts of electricity, the atom and energy to their intellectual and social contexts; they reveal the roles of personal, institutional and national style in the processes of scientific change. Furthermore, the writing and editing does not get in the way of the message, but helps to convey it.

The longest paper (80 pages) in the first volume is John Heilbron's and Thomas Kuhn's fascinating reconstruction of Niels Bohr's path from his 1911 doctoral thesis to his renowned quantized atom concept in 1913. It should be of great interest to physicists not only because of the events it describes but also as a fine example of how historians can use a variety of source materials to illuminate the complex factors involved in the development of a scientist and his ideas. In another long essay, Tetu Hirosige systematically analyzes the physics literature to show the formulation of H. A. Lorentz's theory of electrons and his view of the electromagnetic field. Martin Klein probes into forgotten concepts of early thermodynamics while showing how J. Willard Gibbs's deep admiration for the work of Rudolf Clausius revealed the nature of Gibbs's own scientific views.

These examples provide a glimpse of the rich contents of the first volume. The other essays are similarly valuable and their subjects reflect the scope and variety of this volume: Joseph Agassi on Sir John Herchel's philosophy, D. C. Goodman on Wollaston and the atomic theory of Dalton, Theodore Brown on the electric current in early 19th-century physics, S. G. Brush and C. W. F. Everitt on 19th-century physicists and the radiometer problem, and V. V. Raman and Paul Forman on Erwin Schrödinger's development of Louis de Broglie's ideas.

Three of the essays in the second volume relate to the development and response to Einstein's work. These lead to a discussion by the editor about how a consideration of Einstein's career and his relationship to the scientific and larger communities reveals aspects of scientific life that should be studied by those concerned with the history of very recent physics. Thus McCormmach's foreword to Volume 2 is a critical appraisal of the current state of scholarship in the history of physics and suggestions for the future. The studies on Einstein include Klein on the early phase of the Bohr-Einstein dialogue; Mc-Cormmach on Einstein, Lorentz and electron theory; and Stanley Goldberg on the British response to special relativity.

In other essays Romualdas Sviedrys explores the origins of the Cavendish

Laboratory; Yehuda Elkana focuses on the phases of conceptual change as illustrated by Hermann von Helmholtz's ideas of force and energy; Elizabeth Wolfe Garber shows the relation between Clausius and Maxwell's kinetic theory of gases; Edward Daub writes on the development of the concepts of entropy and dissipation of energy; and an 83-page essay by Paul Forman probes the genesis of Alfred Lande's work in 1919-21 on the anomalous Zeeman effect and its effects on the scientific community in which Landé functioned. Relevant correspondence from 1921 is appended to Forman's essay and the 15 letters provide valuable documentation of this episode.

The subject matter, quality of scholarship and intrinsic interest of the first two volumes of this annual series firmly establish Historical Studies in the Physical Sciences as a rich resource for physicists who desire to understand more about the roots of their intellectual tradition and professional discipline, and who want to convey this understanding to others.

Charles Weiner
American Institute of Physics

Biographical Memoirs Of Fellows of the Royal Society, Vol. 15

266 pp. The Royal Society, London, 1969. \$6.50

These biographical memoirs are always a welcome addition to the archives of scientific history, because they embody valuable resumés of the lives and accomplishments of some of the outstanding contributors to the world of science. But they are also of interest to students and scientists who may like to know a little bit more about persons whose names they come across in text books and journal articles.

The fifteenth volume includes 13 names from various disciplines. Although each one of the scientific biographical sketches is worth the perusal of anyone involved with the sciences, most physicists are likely to find four of the subjects especially interesting: Luitzen Brouwer, William Hume-Rothery, Lev Landau and Edmund Stoner.

The range of information offered by the volume is enormous: The reader runs into a good deal of fascinating details from Brouwer's controversies with Hilbert to the fact that Hume-Rothery was more than an amateur painter, to a background on the Landau-Lifshitz series of books on theoretical physics. The style is engaging throughout. The personal touches in the article on Stoner, which happily

responds to Stoner's own criticism of the "severely impersonal" form, is particularly enjoyable. The complete bibliographies on the 13 scientists constitute a valuable storehouse of references.

Varadaraja V. Raman Rochester Institute of Technology

Radio Astrophysics: Nonthermal Processes in Galactic and Extragalactic Sources

By A. G. Pacholczyk 269 pp. Freeman, San Francisco, 1970. \$13.00

There is certainly a need for a book on radio astrophysics, and so it was with a good deal of anticipation that I opened the covers of this, the first book so titled. I was somewhat disappointed. This is not a book that infuses the whole sweep of the subject with new understandingrather it consists of a few chapters covering topics with which A. G. Pacholczyk is very familiar, patched together with rather brief superficial treatments of some other topics. Nevertheless, it does collect together in one place material widely scattered in the literature. For this reason I think it will find its way on to the shelves of many radio astronomers and be widely used by those teaching the subject.

After an introductory chapter on radio-astronomical measurements, the book attempts to cover the physics involved in the generation and propagation of radio waves in some types of astronomical sources. It treats the propagation of waves in plasmas, synchrotron radiation, (inverse) Compton scattering, processes affecting the distribution of energy in an assembly of relativistic electrons, the spectra of continuum radio sources and radio-line emission. Each chapter is followed by extensive bibliographical notes, which should stimulate the student to read the original literature. There are also four appendices, which range from a summary on the radiation field (which deserves a place in Chapter 1) to tables, nomograms and listings of radio-source catalogs that Pacholczyk has presumably found useful in his own research. For each of the topics treated the mathematical description is developed from fundamentals, but unfortunately the reader is given little insight into the physics of the processes. It would help considerably just to include more discussion of the results of the calculations and of the predictions for special cases.

The book provides a very uneven coverage of what I regard as radio astrophysics. For example, the synchrotron radiation of extremely relativistic electrons (a subject to which Pacholczyk has