we hear that

Albany. He succeeds Curtis L. Hemenway who continues to serve on the faculty and as director of Dudley Observatory.

Earle C. Fowler, formerly of Duke University, has been appointed head of the department of physics at Purdue University.

Norihiko Fukuta, professor of environmental engineering in the University of Denver College of Engineering, has been named head of the university's Denver Research Institute Cloud Physics Laboratory and appointed as lecturer in physics.

James S. Langer has been appointed associate dean of Carnegie-Mellon University's Mellon Institute of Science.

The new director of research at Chalk River Nuclear Laboratories of the Atomic Energy of Canada Ltd. is G. C. Hanna, formerly director of the physics division.

Joining the staff of the Los Alamos Scientific Laboratory are Dennis V. Brockway and Charles W. Vossler in the theoretical design division; Johnny M. Romero in the theoretical division, and Donald L. Thompson in the explosives testing division.

obituaries

Mervin J. Kelly

Mervin J. Kelly, former president and chairman of the board of Bell Telephone Laboratories, died on 18 March at the age of 77.

Kelly, who worked for Bell Laboratories until his retirement in 1959, had begun his association with the Bell System in 1918 after receiving his PhD degree from the University of Chicago. At Chicago he was assistant to Robert A. Millikan and participated in the famous oil-drop experiments. He then joined the Western Electric Co as a research physicist. When in 1925 the company was incorporated into the Bell System, Kelly was transferred to Bell Laboratories. His projects at Bell Labs included making commercially practicable the art of vacuum tubes, the applications of acoustics in telephony, work on photoelectric cells, vacuum thermocouples, ballast lamps and other communication devices.

At the beginning of World War II, Kelly took charge of the Bell Labs war

research and development efforts, concentrating on radar, gunfire control and bombsights. For this work he was awarded the Presidential Certificate of Merit.

After his retirement from Bell Labs, he served as adviser to the administrator of the National Aeronautics and Space Administration. He also acted as research and technology consultant to International Business Machines Corp, Ingersoll-Rand Co and Kennecott Copper Corp.

Paul Huber

Paul Huber died 5 February 1971 at the age of 60 following heart surgery. He was internationally known for his work in nuclear physics and his contributions to science as chairman of the Commission for Nuclear Physics of the International Union of Pure and Applied Physics.

Huber, born in the Swiss village of Rekingen, graduated from a small teacher's college and then entered the Swiss Federal Institute of Technology (ETH) to study physics under Paul Scherrer. His doctoral thesis and other papers between 1937 and 1941 reflect the excitement of the early days of fast neutron physics. Huber left the ETH in 1941 to take a position at the technical college (Technikum) in Winterthur.

HUBER

A year later he was offered the chair of experimental physics at the University of Basel. In spite of the isolation and limitations imposed by the war in Europe, research was started immediately. During the nearly three decades of his directorship, the laboratory achieved international recognition for experiments on scattering and reactions of fast neutrons. In addition Huber pioneered the investigation of polarization phe-

Catch all the great single photo-electron events! On the Channeltron Tube.

The Bendix Channeltron Photon Counter Tube is now available with a 3mm active photocathode and has the same high performance as the original BX 754.

And catch these other special features: a typical dark count rate of less than twenty photo-electrons per second at room temperature, narrow pulse height distribution.

Then, too, the BX 754 has a wide counting plateau because of its narrow pulse height distribution. No resistor divider network is necessary. It's relatively insensitive to external magnetic and electrostatic fields. And, of course, there's the quietness and efficiency of the Channeltron Electron Multiplier.

So if you're looking for the best way to detect low light level information, tune in on the Channeltron Tube.

Write: The Bendix Corporation Electro-Optics Division Marketing Department 1975 Green Road, Ann Arbor, Michigan 48107. Or call: (313) 663-3311.

