High Power-High Frequency Pulsed or C.W. Oscillator

PG-656-C, Mod VI

Power Output C.W. Frequency Range

100 watts 0.500 100 MHZ

Continuously Tunable Harmonic Content (Mostly Odd) < 13%

Pulse Performance—Partial list

>300 watts Peak Power Frequency Range Standard .200 - 177 MHZ PRF — Max (Ext. gate) 300 KHZ 30% Duty Cycle

Frequency Range Extended 12 KHZ Pulse Length 1-30 usec

Additional Features Available Use as Gated Amplifier Separate Pulse Width and Amplitude Controls

Note: PG-655-C, Mod V has the above features except for C.W. Power Limit of 20 watts

VR-720-55-220 MHZ VHF Receiver Designed for pulsed input operation where severe overload conditions occur, the VR-720 continuously tunable receiver can accept pulses with 300 peak to peak over a 55— 220 MHZ range because of a hybrid tube transistor input. No frequency conversion is used so there are no side images or spurious frequency responses. Other features are:

-Separately tunable to accommodate 10-100 pfd effective source.

Band Width 7 MHZ R.F. output (93 ohms) 1 v p to p 3-4 db Noise figure 80 db Gain Max 40 db Gain Range Recovery Time 2 usec 14 lbs Weight Chassis—Rack Mountable 19 × 51/4 × 81/2

Arenberg Ultrasonic Laboratory, Inc.

94 Green Street, Jamaica Plain, Mass. 02130 Telephone Area Code 617 JA2-8640

letters

continued from page 15

group and SLAC's group A have collaborated in a series of electron scattering experiments, including the deep inelastic experiments.

> Richard E. Taylor SLAC Stanford University

Geophysics disagreement

Having read the recent article on "Opportunities in Geophysics" (February, page 23) by my senior University of Michigan colleague H. Richard Crane, I find myself compelled to state my disagreement with both the specific comments contained therein optimum education of a physical oceanographer, and with the general spirit of complacency expressed most explicitly in the concluding paragraphs of his article.

I am moved to write by the vivid impressions left with me by the succession of physics graduate students who have come to inquire of me as to their chances of obtaining a research position in oceanography upon completing their PhD in physics. I saw this same concern mirrored in the questions put to me by a group of physics seniors when I met with them earlier this winter for an evening seminar.

The section of Crane's article dealing with oceanography begins with the statement: "Oceanography is best entered by someone who has completed an MS or even a PhD in one of the basic disciplines such as physics." statement should be inscribed in the same ledger as the following: "Physics is best entered by someone who has completed an MA or even a PhD in applied mathematics." I suggest that both these statements may reflect the vested interests of certain departments, but neither of them is responsive to the legitimate needs of the majority of students. Our students require (and, what is more, expect) to be able to embark on a coordinated (may I say efficient?) curriculum that will, if they are diligent, take them from freshman matriculation to the PhD in something like seven or eight years. I believe that we should devote our efforts to turning out effective, contributing, scientists in this time span. If there is no apparent effort on our part to do this then we will with justification be accused of being unresponsive academic mandarins. Unless a student wishes a protracted formal education I would strongly recommend that he not defer his entry into oceanography beyond the beginning of his graduate years.

The deficiencies that exist in today's undergraduate physics curriculum in preparing a student for graduate study

in physical oceanography are essentially those that Crane cites Landsberg as identifying in discussing preparation for graduate study of atmospheric physics. I wish to suggest to Crane and others who recognize that "recultivation may require changes in the curriculum and research experience, perhaps reaching down into the physics major program" that they need not look far in seeking informed opinion as to what these changes might entail.

Lest the reader come to suspect that I harbor resentments against the physics community, let me hasten to say that I hold the science of physics in high esteem. Indeed, although I received my PhD in oceanography and have for the past three years taught courses in that field, I was schooled through my MS in physics, and spent three fruitful years as an assistant professor of physics. I chose to forsake the teaching of physics for the teaching of oceanography because I felt that I could more closely relate the insights gained in my research to my classroom presentations. This has indeed proved to be the case.

> Edward C. Monahan University of Michigan Ann Arbor

The author comments: As I stated clearly at the beginning of the article. my only sources of information and opinion were several of the elder statesman in the geophysics area. The only exception was that one of the respondents included a quote from a young faculty member. My job was reporting and editing, except for the concluding remark that was termed "complacent." That the views on the ways of entering oceanography and the chances of employment expressed in the foregoing letter differ from those I got from my sources is par for the course and not of my doing; however I can, and probably should, be faulted for not directing my inquiries to a more diverse sample. This is a point that might well be observed by the next author who makes a similar survey of a field. It is to be hoped that on balance such articles on neighboring fields have a plus effect in broadening the horizon for physics students and new PhD's. physics today has run several articles in this vein, and I am trying to assist the editor in his effort to bring others into being. They may be better for Edward Monahan's criticism.

> H. Richard Crane University of Michigan

More chemical-bond debate

The recent exchange of letters between Linus Pauling and J. C. Phillips (February, page 9) was interesting in that it demonstrated three points: (1) articles