

Complete Nuclear Physics Teaching Laboratory

At last! An accelerator-based teaching system for less than \$50,000. A lot less if you already have some of the electronics.

By system, we mean first, the equipment: a 400 KeV Van de Graaff accelerator, vacuum equipment, magnet, scattering chamber, detectors, radioactive sources, support electronics, pulse height analyzer, and radiation monitor.

Second, our teaching manual: 30 graded experiments in nuclear physics, explained step by step, enough to fill a 3-semester laboratory course. By then the student will have performed the fundamental experiments of nuclear physics and encountered a great deal of quantum mechanics, atomic physics, and solid state physics.

Research? Yes. In nuclear physics, solid state physics, atomic physics, and activation analysis. The magnet provides for additional research stations where your staff and graduate students can do original work.

It's everything a teaching /research system should be; simple to operate, virtually

maintenance-free, easily modified for different experiments, low initial cost, expandable with optional equipment.

Our booklet, "The Van de Graaff Nuclear Physics Teaching Laboratory," shows just how this equipment and course book combine theory and practice in the modern physics curriculum. We'll be glad to send it to you.

H	HIGH VOLTAGE ENGINEERING Burlington, Massachusetts
Nar	me
	ition
Org	anization
Add	ress
	Zip

and engineers. Rather, such decisions are political and military and will continue to be resolved in the political and military sphere. Scientists, faced with the simple fact that he who forges the arrows does not control the bow, will thus have individually to decide whether to continue at forging arrows. Reid's account of past examples does little to simplify the task.

Joel A. Snow Head, Office of Interdisciplinary Research National Science Foundation

Solid State Physics

Ryogo Kubo, Takeo Nagamiya, eds. 840 pp. McGraw-Hill, New York, 1969. \$19.50

Some years ago, a newspaper article on the rise of solid state identified its start with the 1940 book *The Modern Theory of Solids* by Frederick Seitz. Since then, the field has amply arrived, and the books in English have multiplied a hundred fold, diversifying over the feasible specializations, levels of treatment and categories of reader.

Is it possible to write a present-day equivalent of the Seitz classic? A comprehensive physicist's solid-state text needs to convey a ramified universe of experimental fact and an elaborate theoretical structure, and then present them interwoven in a duly speculative and critical spirit. This has, of course, grown to a very formidable undertaking. This book, the joint work of six Japanese physicists including the two named above, may be considered in this category. In quality of organization and exposition, unfortunately, much of it is disappointing.

The book is divided into five sections. "Structure and Electron Theory of Solids" is about one third of the whole in length and mainly a conventional solid-state course in itself. It covers the solid types and crystal structures, lattice modes, electron states and dynamics, electron transport phenomena, superconductivity and nuclear resonance. Then follows "Electronic Phenomena in Nearly Perfect Crystals," which deals with defects, localized states and electron statistics, trapping and recombination, photoeffects and electron scattering; "Magnetism," one quarter of the whole and the longest, and perhaps the most advanced of the specialized sec-"Dielectrics" and "Crystal tions; Lattice Defects." These are correctly described on the dust jacket as "loosely coupled." They were first published separately in 1955 as Iwanami Modern Physics monographs, and were combined in 1961 into the original Solid State Physics, which was revised for a second edition in 1966 and again for the present translation into English.

THE UN-COOLER

(... FOR PEOPLE WHO ALWAYS THOUGHT CRYOGENICS WAS A PAIN IN THE NECK!)

NO DEWARS, NO TRANSFER LINES, NO LIQUID CRYOGENS, NO GAS CYLINDERS.

CTi Cryocoolers are ideal for laser raman, IR, resonance spectroscopy (or any application where you want cooling, but don't want complications.)

- Plug-in installation
- Single-button control
- Below 20°K cooling in minutes
- Controlled temperatures to 300° K
- Run unattended for weeks
- High-speed sample interchange

From the Company that makes cool as simple as heat.
Write or call for details on CTi Cryocoolers.

CRYOGENIC TECHNOLOGY inc.

Kelvin Park, 20 266 Second Avenue Waltham, Massachusetts 02154 (617) 899-8300

You're involved in atmospheric studies, or ballistic research, or chemistry. Maybe you're a medical and biological researcher. Or any one of dozens of other scientific or industrial activities for which you need lasers. Like microwelding, high speed photography, holography or hole-drilling.

The HADRON/TRG Model 104 series now provides up to twenty-four different basic configurations to meet your requirements today, next year, and for a long time to come. Characteristics include normal mode output to 10 joules, peak power output to 100 megawatts, and repetition rates to 30 ppm. Rugged, simple, modular design is the reason for such unprecedented flexibility and versatility.

Plus the most complete line of accessories you can find in any medium power laser system.

Tell us your laser problem or requirement. We'll come up with the best answer...for you.

HADRON

800 SHAMES DRIVE, WESTBURY, N.Y. 11590 • 516-334-4402

Most of the content is at a general graduate level, and the appropriate physics prerequisites are assumed. There is relatively little more advanced material. The coverage of today's solidstate field is as broad and comprehensive as one could ask. It is understandable that a lot of the older content should be retained in this present edition (and much of the experimental material is no worse for being long in the tooth). Some duplication of topics, among the five parts, is nothing amiss. But it is a pity that the opportunity was not taken to replace some pedestrian and unenlightening exposition or to provide, with a meager first appearance of a notion, directions to ampler versions elsewhere in the book. Perhaps from sampling more in part one than elsewhere, I found the text a discouragingly flat progression of items, so that the student would get little indication of which were the more important in implications or in need of deeper study. It passes over opportunities to help him build a unified understanding of a topic.

It appears to me that this book would be useful as a supplementary text, together with an intensively pedagogical work such as J. M. Ziman's *Electrons and Phonons* (Oxford U. P., 1960), for a graduate course and as a reference work on the professional's shelves. As a handbook, it covers at least adequately a great deal of essential material.

Peter J. Price IBM Research Division

new books

CONFERENCE PROCEEDINGS

Developments in High Energy Physics (Conf. proc. IX Internationale Universitältswochen für Kernphysik 1970 der Karl-Franzens-Universitalt Graz, Schladming, Austria, 23 Feb.-7 Mar. 1970). P. Urban, ed. 633 pp. Springer-Verlag, New York, 1970. \$30.00

Handling of Nuclear Information (Conf. proc. 16-20 Feb. 1970, Vienna). 671 pp. International Atomic Energy Agency, Vienna, 1970. \$18.00

Methods and Problems of Theoretical Physics. J. E. Bowcock, ed. 440 pp. American Elsevier (North-Holland), New York, 1970, \$21.75

Proceedings of the Third Hawaii Topical Conference in Particle Physics (Conf. proc. University of Hawaii, Honolulu, Hawaii, 18-29 Aug. 1969). W. A. Simmons, S. F. Tuan, eds. 169 pp. Western Periodicals, Los Angeles, Calif., 1970.

Spectrum Formation in Stars With Steady-State Extended Atmospheres (Conf. proc. International Astronomical Union Colloquium No. 2, Commission 36,