dard requirements of high schools. Magan's double-column parallel calculus and noncalculus treatments in some parts are therefore very handy.

Certainly a physics student must be able to work in any system of units. Therefore Magan employs throughout the cgs absolute, the mks absolute and English gravitational Maybe for students not majoring in physics this could sometimes be too difficult, at least this is my experience. Each chapter mentions modern applications, which correspond of course to the author's temperament and taste.

The second volume is devoted to electricity and magnetism and geometrical and physical optics. Spectroscopy and nuclear phenomena represent the dessert in the last 54 pages. Even for an introductory course, Magan's treatments of semiconductors, relativity, superconductivity are to my taste too short. Why not include in the next edition also a little bit more on elementaryparticle physics, because so many exciting things are going on there?

Magan's book is certainly well written and would be a very good help for freshmen and sophomores. The book can be recommended to all teachers who like the classical way into the royaume of physics.

EDGAR LÜSCHER Technischen Hochschule München

Physics: Its Structure and Evolution

By W. A. Blanpied 950 pp. Blaisdell, Waltham, Mass.,

Physics texts will, we hope, stimulate students to an interest in a fascinating modern science, its methods and some of its current topics. I feel that this is such a book. Although it is designed to be used in a liberal-arts course, it should also be considered by those looking for a text for science students. The author's intention is to "present physics from a physicist's point of view" and this comes across well.

Although the usual range of topics is included, some (such as ray optics and simple circuits) receive only a brief treatment. This leaves room for those areas where the concepts are not always

easy for freshmen to grasp.

for 0

There is a full chapter on symmetry principles and conservation laws-a good example of modern thinking and worth the effort that will be required. The chapter on conservation of energy is good, with a broad sweep. I liked the idea of grouping in one chapter several topics in classical probability and statistics in physics. The final chapters appear a bit breathless, but are still good in showing the great range of application of physical ideas, from nuclear physics through some discussion of fundamental particles, chemical ideas and stellar evolution.

Each chapter has a good selection of suggested readings; there is the usual number of problems and, where appropriate, more detailed mathematical derivations to supplement the main

It is very hard to judge a text without actually using it in class, and many of the criteria usually adopted are very personal. However, this book appears to be very attractive, and I shall probably want to try it with my next course.

> M. W. FRIEDLANDER Washington University

Aristotle's Physics

H. G. Apostle, trans.

386 pp. Indiana U. P., Bloomington, Ind., 1969. Cloth \$12.50, paper \$3.95

The modern physicist who picks up a copy of Aristotle's Physics will find himself in very unfamiliar territory. It is not simply that Aristotle has given erroneous or elementary answers to familiar questions: The very questions are un-

For one thing, physics, as conceived by Aristotle, is much broader than modern physics. Aristotle's physics is the science of nature; its aim is to formulate general principles for dealing with all natural bodies-organic as well as inorganic-having within themselves a principle of change or movement. Moreover, Aristotle expressly divorces physics from mathematics. Physics is concerned with change, whereas mathematics abstracts certain unchangeable aspects from bodies and considers them as though they existed apart from matter and the world of change.

The sort of principle developed by Aristotle to deal with natural bodies is illustrated in his analysis of motion, which dominates the Physics. Motion, by which Aristotle means change in general, always occurs between two opposites-such as hot and cold or white and black-which Aristotle calls "form" and "privation." There must also be something to undergo change (the "substratum" or "matter"), a purpose or end towards which the change is directed and an agent or instrument directly responsible for the change. Now to understand motion is to comprehend all of these factors, which Aristotle denominates, respectively, the formal cause, material cause, final cause and efficient cause. Aristotle goes on to discuss the infinite, place, void, time, contrariety and so forth, but enough has been said to demonstrate the chasm separating Aristotelian analysis of motion from that of Newtonian and more recent physics.

TOPICS IN PLASMA DIAGNOSTICS

By I. M. Podgornyi, Institute of Cosmic Studies, Moscow, USSR

In this volume the entire spectrum of diagnostics is covered, thus making it possible to evaluate all of the most recent approaches to specific laboratory problems.

Translated from Russian.

CONTENTS: Oscilloscope measurements of current and voltage in pulsed Plasma diagnostics with probes Determination of electron temperature from emission intensity ratios in line spectra Determination of plasma parameters from the shape of spectral lines Continuous spectra Determination of electron density and temperature Time sweep photography Determination of the dielectric constant of a plasma - Particle methods for plasma diagnostics Measurement of the parameters of accelerated plasmoids. Plasma diagnostics with probes De-termination of electron temperature

rameters of accelerated plasmoids.

JANUARY 1971

VACUUM MICROBALANCE TECHNIQUES*

Volume 8

Edited by A. W. Czanderna, Clarkson College of Technology, Potsdam, N.Y.

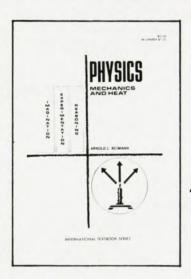
The latest volume in this outstanding continuing series marks the tenth anniversary of the first conference and an accumulation of more than 120 important papers on the subject. volume in the series has provided a foundation whereby new advances are presented and discussed by inter-nationally-renowned experts. Volume 8 continues to report up-to-date and significant research activities from those scientists and engineers studying the measurement of mass as a means of examining physical and chemical phenomena. Specific topics include: mass defect produced by thermal gradients, interpretation of oxidation data obtained during hightemperature oxidation of materials, and applications of the crystal oscillator microbalance. Proceedings of the Wadefield, Mass. Conference, June 12-13, 1969.

APPROX. 242 PAGES \$22,50 SBN 306-38408-6 JANUARY 1971

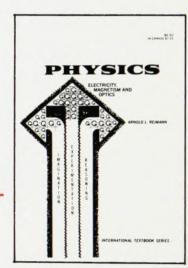
* Place your continuation order today for books in this series. It will ensure the delivery of new volumes immediately upon publication; you will be billed later. This arrangement is solely for your convenience and may be cancelled by you at any time.

SEE US AT BOOTH NO. 99 AT THE ANNUAL PHYSICS SHOW

plenum press / consultants bureau


227 W. 17th ST., NEW YORK, NEW YORK 10011

& Noble INTERNATIONAL

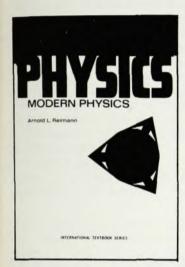

Provides students with textbooks of outstanding scholarship, clear and thorough presentation, and durable quality at Realistic Prices!

JUST PUBLISHED in the unique ITS format—colorful tanolin soft covers and flexible bindings.

PHYSICS-by Dr. Arnold Reimann, University of Queensland, Australia

Vol. I Mechanics & Heat 478 pp., \$6.50.

Vol. II Electricity, Magnetism, and Optics 569 pp., \$6.50


Comprehensive introductory textbooks for science majors and engineering students written for the student who is interested in learning not merely what we know about physics, but how we know it, and how we understand and appreciate the methods by which scientific knowledge is acquired.

Vol. I and II combined in one volume. 1047 pp., \$10.95. Solutions manual available.

Barnes & Noble International Textbook Series

TEXTBOOK SERIES 18

COMING IN MARCH, 1971 -

Vol. III - Modern Physics, 525 pp., \$6.50.

As the third book in a series, the material in this volume presents an integrated and balanced approach to solid state and nuclear physics. It is ideally suited as a companion text to Volumes I and II or as a central text in a modern physics course.

For further information or a free examination copy of the various volumes in PHYSICS by Reimann, VISIT BOOTH NUMBER 131 AT THE 1971 PHYSICS SHOW or write on your college letterhead to:

David Richerson, Marketing Manager, Barnes & Noble, International Textbook Series, 105 Fifth Ave., New York, N.Y. 10003

Other Barnes & Noble Books on Display, Booth No. 131, 1971 Physics Show

Aitchison: GENERAL PHYSICS (Chapman & Hall-Hicks Smith, 1970, 522 pp., \$9.50)

Bellamy: ADVANCES IN INFRA-RED GROUP FREQUENCIES (Methuen, 1968, 304 pp., \$10.50)

Bellamy:THE INFRA-RED SPECTRA OF COMPLEX MOLECULES (Methuen, 1966, 425 pp., \$10.00)

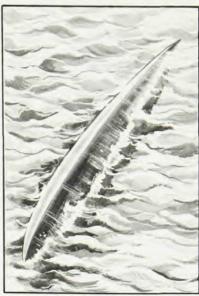
Boyd-Sanderson: PLASMA DYNAMICS (Nelson, 1969, 348 pp., \$10.75)

Burr: MEASUREMENTS IN APPLIED PHYSICS (Chapman & Hall, 1968, 228 pp., \$6.00)

Green: MATRIX METHODS IN QUANTUM MECHANICS (1968, 118 pp., \$2.25)

Le Grand: LIGHT, COLOUR, AND VISION (Chapman & Hall, 1968, 564 pp., \$12.75)

Lock-Measday: INTERMEDIATE NUCLEAR PHYSICS (Methuen, 1970, 320 pp., \$13.50)


Lynton: SUPERCONDUCTIVITY 3/E (Methuen, 1969, 219 pp., \$5.00)

Melia: AN INTRODUCTION TO MASERS AND LASERS (Chapman & Hall, 1967, 162 pp., \$5.50)

Smith: WAVE MECHANICS OF CRYSTALLINE SOLIDS 2/E (Chapman & Hall, 1969, 553 pp., \$20.00)

105 Fifth Avenue, New York, New York, 10003

ESKIMO ROLL

NANOOK DOWN

NANOOK UP

When we were testing out our new Surfing and Whitewater Kayaks last Summer at Nauset Beach, Bart Hauthaway, our Chief Designer, was imparting to those interested the Eskimo secret of making a 360° rollover in one of these exciting craft.

He made it seem easy. A few hardy souls, under his tutelage, also succeeded in moving from the head-down underwater to the head-up in air position.

A witness to these proceedings, a Physicist, offered a most lucid analysis of the forces and deflections involved in turning a drowning Kayaker into a wet, but safe one. His words were never written down, nor his explanation or identity remembered.

We of Old Town Canoe appeal to the Physics Community to help us solve this problem.

For the most simple, logical, and succinct technical explanation of how the Kayaker rights his craft after rollover, as judged by us and by Professor Paul R. Camp, Chairman of the University of Maine Physics Department, we will award the author his own, personal Old Town Slalom Kayak.

The explanation should be mailed before April 15 to Deane Gray, Old Town Canoe Company. We will announce the winner in June.

To help the Physicist do his homework and some experimentation on this problem, we'd be happy to mail you our latest catalog of Old Town Canoes, Kayaks, and Power Craft which includes a helpful bibliography. Who knows, we might sell enough of our boats to the Physics Community to pay for the bother of this whole business.

One very obvious question calls for an answer: Is there any reason why physicists should pay attention to Aristotle and his system of physics? Or to put it more bluntly, should a new trans-lation of Aristotle's *Physics* be reviewed for any purpose other than warning physicists not to waste their time on it? Without making a general plea for study of the history of science, may I simply point out that to understand fully what it means to be committed to the world view of modern physics, it is required that one understand what it means to be committed to an alternative world view. Hippocrates G. Apostle, in his excellent translation (accompanied, I must add, by useful notes and a glossary of terms), has made available the most influential of all the alternativesnamely, the one that dominated western thought for some 2000 years.

> David C. Lindberg Associate Professor of History of Science University of Wisconsin

Theoretical And Experimental Biophysics, Vol. 2

Arthur Cole, ed. 343 pp. Marcel Dekker, New York, 1969. \$17.75

The field of biophysics is certainly large enough and important enough to accommodate scientists with a broad range of interests. In an interdisciplinary field such as this, it is often difficult to determine where one begins and another ends. However, it would seem possible to sort out the basic disciplines.

The content of this book contributes very little to the understanding of the physics of biological systems. It is definitely slanted towards chemical processes and their role in living systems, which is in contrast to other treatises on the same subject. At best, its main chapters might be classified as physical chemistry or the applications of engineering thermodynamics to biological systems.

The book has five chapters containing almost pure chemistry or technique. Again, does the use of a physical technique make the subject matter physics? I think not. The chapters on membranes and relaxation methods appear to me to be pure biochemistry. Although physical methods are described and have provided much of the data discussed, interpretation is made almost entirely from a chemical point of view. A third chapter on chemiosmotic coupling and energy transduction covers the application of well known thermodynamical principles to biochemical systems. The final two chapters cover the