letters

But the large computer is seldom needed for problem solving by the typical college physics department. In those instances where additional computational power is required, the total resources of the minicomputer system can be dedicated to a single problem. After the "tough" problem is solved, there are three or more off-line teletype-writers—depending on the system—immediately available for on-line applications. If the dedicated small computer is unable to run the program, then time can be rented from a commercial utility.

A far better alternative than purchasing time from a commercial timesharing utility is to buy your own timesharing system. It is very low-cost, and the system can be expanded as the need arises and financial resources are allocated. Hundreds of educational institutions throughout this country are starting off with smaller systems and gradually expanding them. For example, a single-user configuration costs approximately \$8500. This system is expandable to a four-user time-sharing configuration for less than an additional \$16 000. Alternatively, an initial investment of approximately \$13 000 permits the institution to expand its singleuser system to a multilanguage 16-user configuration whenever the need arises or financial resources are allocated.

In comparison with a commercial time-sharing utility the costs of a four-user time-sharing system are about the same over a three-year period but more on-line terminals are available to students and faculty when a computer system is owned (four terminals instead of one). And the school owns a computer system at the end of the time period instead of having a pile of worthless rent receipts.

I might also add that if you don't have a physicist in your department with a computer background, don't worry. All computer systems come complete with instruction booklets, training courses, and sales experts.

RICHARD E. MAY Digital Equipment Corporation Maynard, Mass.

Solid-state biology?

-1900

Freeman Dyson seems to equate theoreticians and snobs in his stimulating article, "The Future of Physics" (September, page 23). With regard to molecular biophysics, at least, I prefer his phrase "scorn of snobs" to Bragg's "scorn of theoreticians." There is plenty of room for both theoreticians and experimentalists in this still relatively new field.

One important area not mentioned by Dyson in his admittedly brief survey,

and of great current ignorance, is the solid-state physics of biological materials with high pi-electron densities. (The pi-electrons are those whose wave functions extend significantly out-of-plane in organic ring compounds.) Two examples of such materials are native DNA with its stacked bases, and the chlorophyll-protein complexes in photosynthetic lamellar structures. In fact, the pi-electron density along a single strand of stacked DNA is an order of magnitude greater than that in crystalline anthracene, a favorite object of study among organic solid-staters. Philip Rosen¹ has constructed a Kronig-Penney model for DNA from which he calculates single-electron bandwidths that are between one and two orders of magnitude greater than those for anthracene. Transport kinetics in anthracene is a matter of controversy concerning narrow-band conduction versus phonon-assisted hopping; what of DNA, with its much broader bands? The question is wide open. There is a whole new solidstate physics involving DNA alone.

While a true "solid-state biology," if it ever comes, is still far off, a band-theoretic approach to the properties of the macromolecular structures of biology may be just as important a complement to the currently hegemonic valence-bond approach as it has been to the properties of crystalline inorganic solids. Life, after all, is probably just as much a game for electrons as for molecules.

The physics of biological materials is also of interest in its own right, regardless of applications to biology per se. The reason is that study of these materials may lead to new, not-necessarily-biological, technologies. This point is not itself new, of course, most notably having been recognized by Bell Telephone Laboratories some years ago. Possibilities for DNA, with its variety of conformational states, range from highly compact and reliable information storage to room-temperature superconductivity.²

The great barrier to progress at present in this new branch of solid-state physics is the lack of significant and substantial confrontation of theory and experiment-theoreticians and experimentalists are still going their separate ways. The situation is rather like that in which metallic solid-state physicists found themselves before they came together on the Fermi-surface problem (Walter Harrison, October 1969, page 23). A certain amount of water is essential for the structural integrity of most functional biological materials, a fact which has thus far severely hindered experimentalists. Theoreticians have concentrated on calculating properties, such as de conductivity, that have small hope of reliable experimental verification. Solid-state biophysics has not yet found

Linear motion benchmark

20.127 Translation Stage

New translation stages use a dual roller bearing system to achieve the smoothest shake-free motion available in a mechanical assembly.

Features

- □ Convenient mounting arrangement
- ☐ 2-inch stage travel
- ☐ X-Y motion by stacking
- Spring loading and magnetic coupling for positive contact
- Stages can be delivered with center aperture to 1.75 inches

Choice of drive unit

Choose among a precision micrometer head and two differential screw translators as drive units. The differential screw translators provide position resolution to 1 millionth of an inch. A standard mounting shoulder makes the drive units interchangeable for simple conversion.

Specifications

Model	Stage Travel	Drive Travel	Position Resolution	Price
20.127	2"	1"	.0001"	\$150
20.128	2"	.05"	.000005"	215
20.129	2"	.01"	.000001"	215

We will be happy to send you complete information about translation stages. Fill in this form and mail it today—or call us at 607-272-3265.

Lansing Research Corporation, 705 Willow Avenue, Ithaca, N.Y. 14850. (7)

20.00			
Please	send	complete	catalog

Dept. or MS______

Street ____

State____ZIP___

Lansing

The Cary 401. Our vibrating reed nit-picker.

The Cary 401 vibrating reed electrometer detects currents on the order of 10-17 ampere, charges as small as 5 x 10-16 coulomb and potentials down to 2 x 10⁻⁵ volts from high impedance sources. Its list of standard features includes solid state circuitry, multiple resistor input switching, remote input shorting, critical damping, measurement of potentials from grounded sources, and master-slave operation. And it can be rack or bench mounted.

If your application is in mass spectrometry, radioactivity, physical measurement or biomedical research, the Cary 401 can

tackle just about any problem you've got to solve. For example:

MASS SPECTROMETRY
The 401 provides sensitive,

stable ion current measurements in any mass spectrometer system with an optional remote ranging modification available for computer-controlled systems. And, in isotope ratio studies such as uranium 238/

235, a pair of our electrometers can determine ion ratios with an accuracy of about 0.02%.

RADIOACTIVITY

While particularly suited to applications which require drift-free operation, the Cary 401 also measures soft beta radiation such as carbon-14, tritium and sulfur-35. Or assays radioactive labeled chromatographic effluents.

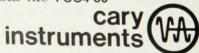
PHYSICAL MEASUREMENTS With the 401, you can investigate resistance, charging, hysteresis, polarization, absorption and dielectric phenomena. Or study the photoelectric, thermoelectric and electrochemical properties of matter. Semiconductor studies include conductivity, resistivity, impurity and Hall effect measurements. And, because input resistance is greater than 10¹⁶ ohms, the

401 is ideal for measuring

transistor leakage currents, diode reverse currents and MOS FET gate

resistances.

BIOMEDICAL RESEARCH


When measuring ion transfer, potentials and resistances across membranes, the 401 gives unmatched performance. Other biomedical applications include in-vivo respiratory analyses of C¹⁴O₂, intermediary metabolism investigations, polysaccharide synthesis and degradation

Range 3 millivolts full scale. 10 12 ohm input resistor. (Equivalent to 10-13 amps.)

analyses and gas chromatographic studies of steroid and fatty acid molecular systems.

Twenty-three years of experience stand behind the Cary 401, the world's best commercially available vibrating reed electrometer. By far. For complete details, write Cary Instruments, a Varian subsidiary, 2724 S. Peck Road, Monrovia, California 91016. Ask for data file POO4-60

letters

its "Fermi surface."

Finally, I observe the interesting juxtaposition of Dyson's and Bryce De-Witt's (September, page 30) articles. Dyson points out the suitability of particle experimentalists for dealing with the problem of sequencing quantum mechanics in conjunction with consciousness-a presumptive property of certain biological systems. The possibility of a need for a nonlinear generalization of quantum mechanics (distinct from Wigner's proposal) has also been mentioned3 in connection with certain aspects of particle theory. Perhaps, then, molecular biology calls for the talents not only of solid-state physicists and high-energy experimentalists, but even of high-energy theoreticians!

References

- 1. P. Rosen, Biophys. J. 8, 391 (1968).
- J. Ladik, G. Biczo, J. Redly, Phys. Rev. 188, 710 (1969).
- 3. E. P. Wigner, "Remarks on the Mind-Body Question," in *Symmetries and Reflections*, Indiana U.P., Bloomington (1967).

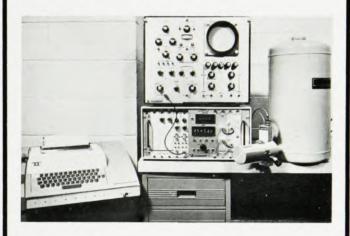
ROBERT M. PEARLSTEIN
Oak Ridge National Laboratory
Oak Ridge, Tenn.

Jobs for Negro physicists

In a nation that has at least 10% of its population Negro there are, at most, 1% of the physics community who are Black Americans. Many direct and indirect efforts are under way to redress this gross misbalance. As a consequence colored physicists do not have the difficulties their white brothers experience in obtaining posts.

To correct this imbalance caused by the long racist bias against Negroes in the US such discrimination in favor of nonwhite scientists certainly should, and probably will, continue for some time. Negroes should therefore be encouraged to pursue studies in physics and physicsrelated fields.

IAN WILLIAMS Knoxville College Knoxville, Tenn.


Vote for microfiche

I wish to support wholeheartedly the suggestion by Enrique Grünbaum and Claudio Gonzalez in their letter (October, page 13) for simultaneous distribution of journals and a microfiche, or microfilm, copy. Their reason is primarily to speed the mailing of publications. The additional argument they give in their last paragraph is, however, of paramount importance to us and, I suspect, to many others. As the journals and the size of each journal incontinued on page 97

FREE* \[\gamma-RAYS \]

TO:

The γ -ray spectroscopist who wants to place his Ge(Li) system responsibility with one manufacturer.

FROM:

THE SYSTEMS COMPANY. Nuclear Diodes makes it all!—Ge(Li) detectors (of any variety), H.V. Supplies (500V to 5KV), linear amplifiers with base line restorers, mixers, routers, etc., and the lowest priced, most featureful, multichannel analyzers available—512 to 4096 channels—all with 8192 channel ADC's and expandable memories. (Please take note that 8192 channels are a necessity to properly define a peak now that $\sim\!2.0$ keV resolution FWHM for 1.33 MeV γ -rays is becoming more routine!)

VIA:

Purchasing Agents, Budget Committees, Department Heads, etc.—Lowest possible cost! We're the first complete nuclear spectroscopy systems manufacturer. Our least cost system starts around \$8,500 & for that price we'll even throw in the γ -rays!*

*A Co⁶⁰ calibration source is shipped with each new systems order!

Write in for complete literature and specimen quotations.

