grant group more able and more adaptable than those who remained behind, or were they no different from the rest? Mrs Fermi asserts that immigrants were more suited to the rigors of migration and Charles Weiner shows, in his examination of the physics community, how criteria of scholarship and personal capacity were applied in decisions on which scholars were to receive aid. Weiner notes with no little irony that, for younger scholars, not to have published was to perish.

Third, would the immigrants' achievements have been of the same quality had they remained in Europe, even if the war had not occurred? Although it is impossible to answer questions of this sort, they do lead one to identify the conditions in the US that facilitated work for the émigrés and the ones that stood in their way. And last, what sorts of adjustments, personal and intellectual, were required for the émigrés and to what degree did these vary according to their fields and scholarly dispositions?

These volumes might best be examined in tandem for their differences make them complementary. Mrs Fermi explicitly asks, for example, how much immigrant physicists contributed to the winning of the war (a great deal, she reports; but they were by no means responsible for radar, the war's most important technological development), Szilard's memoir, full of his characteristic wit and robustness, covers similar territory from the perspective of a participant. The difference between the two is a difference in angle of vision and knowledge. Even in physics, Mrs Fermi is an outsider, and this defect becomes especially pronounced in her treatment of psychoanalysis. She has, it appears, little or no familiarity with the development of psychoanalytic thinking in the US, which leads her to overemphasize the establishment of analytic institutes at the expense of intellectual substance. Major figures in American psychoanalytic theory, Heinz Hartmann or Ernst Kris, for example, receive little attention in her lengthy chapter on the analysts.

At the same time, she does rather well in other fields. At the expense of being parochial, I can testify that the section on my colleague, Paul Lazarsfeld, is both succinct and correct. One misses the intimacy of his own memoir in the Fleming-Bailyn collection and his account of the es-

tablishment of large-scale social research in America, but Mrs Fermi's treatment is competent enough for her purposes.

Each volume then succeeds in its Mrs Fermi's is the more comprehensive and superficial, the less subtle and luminous. She has, however, made an effort to bring together materials that exist nowhere else and to juxtapose them so as to reveal patterns that would otherwise be invisible. For this, we should be grateful. Where Mrs Fermi's work is earnest and responsible, several essays in the Fleming-Bailyn volume are dazzling. both in their scholarship and their literary grace. Collections of this sort are inevitably uneven in quality, but Fleming's own piece on the role of physical thinking in the development of molecular biology more than compensates for some of the more routine companion papers. Even physicists who have followed the emergence of molecular biology should learn something new on the contributions by Bohr and Schrodinger via the onetime physicist Max Delbrück, now Nobel laureate and patron saint of the "Phage Group."

Appended to Weiner's paper on the physicists are reproductions of several documents of considerable historical interest: the most striking is from *The Manchester Guardian* (May, 1933) listing, day by day, the names of German professors dismissed from their posts. It is a chilling reminder of those days.

The Fleming-Bailyn book has already been celebrated by several prizes, and Mrs Fermi's book has received good notices as well. Physicist readers should find both deserving of their attention.

Harriet Zuckerman is a member of the department of sociology at Columbia University. Her work in the sociology of science has focused on scientific elites, especially Nobel laureates.

Topics in Atomic Collision Theory

By Sydney Geltman 247 pp. Academic, New York, 1969. \$13.00

Atomic physics, that staple of sophomore physics courses, remains incompletely understood despite more than a half century of study. True, we do possess the laws of interaction between the electrons and nuclei composing atoms, laws that we lack in more recently accessible energy domains. But the practical difficulties that impede our understanding of any many-body system are present in atomic physics as in other areas.

We are forced to rely on approximation schemes in computing cross sections for collisions between even the simplest atoms. Continued refinements of experiments and computational techniques permit us to probe ever finer details of collisions, and it is a continuing task for theorists to provide adequate formalism for atomic-physics calculations.

. Motives for refining the theory of atomic collisions are not hard to find. Atomic physics per se continues to interest many people. Astrophysicists seek more accurate rate coefficients to use in constructing more realistic models of astronomical gases. Still others are concerned with excitation and ionization phenomena in the earth's at-

mosphere (a euphemism for study of ballistic-missile reentry).

The present book examines selected aspects of the quantum mechanics of binary encounters between nonrelativistic particles. Specifically, it discusses scattering of a spinless particle from a real potential (part 1), scattering of electrons by hydrogen and other atoms (part 2) and atom-atom collisions, including rearrangements (part 3). As the book title suggests, this is a collection of topics taken from the very large and rapidly growing domain of atomic physics; it is not intended to provide either a complete discussion of atomic collisions (as was earlier done by N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions, Cambridge U. P., 1965) or a compendium of results (as has been recently published by B. L. Moiseiwitsch and S. J. Smith, US Government Printing Office, NSRDS-NBS

The selection includes major standard topics, such as the analytic behavior of potential scattering amplitudes, the continuum Hartree-Fock equations for electron-atom scattering and the Landau-Zener curve-crossing model for atom-atom collisions. Both the choice of topics and the presentation reflect the origin of the book as a course of graduate lec-

New and Recent Titles in Physics...

MATHEMATICAL AND THEORETICAL PHYSICS, in 2 Volumes

By the late EGIL A. HYLLERAAS Foreword by Joseph O. Hirschfelder

"This is truly a great book written by one of the greatest physicists of the twentieth century."-from the Foreword

Extensively revised and up-dated, the English adaptation of Mathematical and Theoretical Physics appears in two volumes. The bulk of the author's endeavor encompasses five major themes: Mathematical Preparations for Theoretical Physics; Classical Mechanics; Thermodynamics, Kinetic Theory of Gases, and Statistical Mechanics; Electricity and Magnetism; and Atomic Theory.

Volume 1 Just published 512 pages (approx.) \$15.00 Volume 2 528 pages (approx.) \$15.00

FOURIER METHODS IN CRYSTALLOGRAPHY

By G. N. RAMACHANDRAN, Indian Institute of Science and R. SRINIVASAN, University of Madras

A Volume in the Wiley Monographs in Crystallography, edited by M. J. Buerger

A treatise on theoretical methods for transforming the data of x-ray diffraction by a periodic crystal into the electron density distribution in the crystal, this monograph is particularly concerned with procedures for deriving the structure via Fourier methods applied directly to x-ray intensities. This volume is essentially an account of the authors' procedures for deriving a structure, together with a discussion of related topics and extensions of their procedures.

Just published 256 pages (approx.) \$15.9

ION-MOLECULE REACTIONS

By E. W. McDANIEL, Georgia Institute of Technology; V. CĚR-MÁK, Institute of Physical Chemistry, Czechoslovak Academy of Sciences; A. DALGARNO, Harvard University; E. E. FERGU-SON, U. S. Department of Commerce, Environmental Science Services Administration; and L. FRIEDMAN, Brookhaven National Laboratory

A Volume in the Wiley-Interscience Series in Atomic and Molecular Collisional Processes—Advisory Editor, C. F. Barnett and Assistant Editor, Donna M. Cobble

Written by five specialists in the field of rearrangement collisions, this volume presents a critical analysis of the accuracy and reliability of all the known experimental methods for making quantitative studies of ion-molecule reactions. Considerable space is devoted to the theoretical foundations of the subject and to the various models that have been adopted in computations of reaction rates.

Just published 376 pages (approx.) \$19.95

SYMMETRY PRINCIPLES AND ATOMIC SPECTROSCOPY

By BRIAN G. WYBOURNE, University of Canterbury, Christchurch, New Zealand

This volume illustrates the application of the theory of compact groups to problems in atomic spectroscopy. It is the first book written for physicists approaching the subject via the theory of Schur Functions and the calculus of plethysm. Numerous examples for calculating the dimensions of group representations, branching rules, manipulation of Young tableaux and the operation of plethysm prepare the reader for independent applications of the theory of compact groups to any relevant field of physics and chemistry. A 200-page tabulation of the properties of compact groups is also included.

Just published 384 pages (approx.) \$17.50

THE APPLICATIONS OF HOLOGRAPHY

By HENRY JOHN CAUFIELD, Sperry Rand Research Center, and SUN LU, Texas Instruments Incorporated

A Volume in the Wiley Series in Pure and Applied Optics, edited by Stanley S. Ballard

"It was our intention to write a book not for our fellow holographers, but for the many technical people who could use holography if they knew what it can do and how it can be done. Therefore, we have tried to make the book a self-contained introduction to holography and its applications."—from the Preface

Written for nonholographers who wish to use it in their own field of interest, and who require a thorough understanding of its uses, this is the most complete account available of the uses to which holography can be put.

1970 160 pages (approx.) \$9.95

100

5,08Y

207

E/G

M.V

320

my b

Ite

100

172

I/ the

210

BOFSE

E

-1720

100

TE

(B)

三次

79803

150

75 0

2.500

100

thety.

rapple

Se the

Nº Stude

CES IN PL

ALBER

9 ourre

is cont

3 15 WELL-

ECENT DI

e geo of expa

Contrib

i thenon

DIRECT NUCLEAR REACTION THEORIES

By NORMAN AUSTERN, University of Pittsburgh

A Volume in the Monographs and Texts in Physics and Astronomy, edited by R. E. Marshak

A guide to modern research in direct nuclear reaction theories, this book both evaluates and classifies published research reports and explores the background and practical development of this field. Direct reactions are discussed as a special case of nuclear structure theory. Students preparing for work in theoretical or experimental nuclear physics, as well as active researchers in this field will benefit from this systematic approach to the vast amount of published research articles.

1970 448 pages (approx.) \$19.95

OPTICAL DATA PROCESSING

By ARNOLD ROY SHULMAN, Goddard Space Flight Center A Volume in the Wiley Series in Pure and Applied Optics, edited by S. S. Ballard

Since most available literature in the field of optical data processing is at a rather advanced level, it does not provide an ample introduction for prospective newcomers to the field. To fill this gap, the author provides the detailed background necessary for understanding coherent optical data processing techniques, with practical examples and results of these techniques applied to specific types of data.

1970 710 pages \$32.50

MODERN QUANTUM MECHANICS WITH APPLICATIONS TO ELEMENTARY PARTICLE PHYSICS

An Introduction to Contemporary Physical Thinking

By JOHN A. EISELE, Naval Research Laboratory, Washington,

"A most sophisticated text based on a course given by the author in quantum electrodynamics and elementary particle physics, an important aspect of active research in present-day physics."—New Technical Books, N. Y. Public Library

"There are many students of physics for whom the standard available texts on this... difficult branch of modern physics are unsuitable. It is especially difficult for a student not working under an expert teacher to break into field theory and elementary particle physics. The efforts of many universities to include such courses in their graduate curricula are hampered by a lack of professors with the proper background... Studying books or papers that one expert wrote for another is not a satisfactory introduction to a subject. For this reason I have tried to write a book for hard-working graduate students as well as one of interest to Ph.D.'s and professors. I have striven to accomplish this by filling in the steps in which 'it can be shown' or 'it is well known that' usually appears. An effort is made to show the student the various notations that he may encounter in his further studies..."—from the Preface

969 541 pages \$19.95

from Wiley-Interscience

TRANSFER AND STORAGE OF ENERGY BY MOLECULES, in

Edited by GEORGE M. BURNETT, University of Aberdeen and ALASTAIR M. NORTH, University of Strathclyde, Glasgow

Volume 1: Electronic Energy examines the transfer and storage of electronic energy, including the processes occurring during chemical reactions, the chemistry of electrically excited molecules, energy transfer in radiation chemistry, and thermal activation of electronic states.

Volume 1

1969

234 pages

Volume 2: Vibrational Energy reviews the current theories of vibrational energy transfer, the background of the experimental methods currently used to study the phenomenon, and the experimental results obtained to date.

Volume 2

1969

410 pages

\$18.50

OPTICAL CRYSTALLOGRAPHY, Fourth Edition

By ERNEST E. WAHLSTROM, University of Colorado

"The fourth edition of this classic guide to the art of and science of optical crystallography is a welcome addition to its predecessors. Heavily revised with many new and redrawn illustrations, increased mathematical development, definitive references at the end of chapters and a 37% increase in pages, Wahlstrom's fourth edition of Optical Crystallography will not only take the place of its predecessor as the textbook for this field, but assume the position of the prime reference work on the subject."—Journal of Geological Education

This volume introduces the reader to the modern theory and practice of the study of crystals and fragments of nonopaque

substances in visible polarized light.

969 489 pages

\$14.95

PHYSICS OF SEMICONDUCTOR DEVICES

By S. M. SZE, Bell Telephone Laboratories, Inc.

"By the breadth of its subject matter, its sheer bulk, and the number of its formulae and figures, this book is certainly the most ambitious opus yet written in the field which underlies the whole structure of modern electronics: semiconductor device physics. Written by a well-known young researcher in the field, it treats virtually all important semiconductor devices and the phenomena on which they are based."—American Scientist

"The Physics of Semiconductor Devices by Simon Sze is by far both the most complete and the most up-to-date book describing virtually all the important semiconductor devices. Moreover, with about 500 figures and 30 tables it is a storehouse of information that will be of great value to all workers in the field of semiconductor devices. It contains about 1,000 references to the pertinent work in the field up to and including 1968. This amazingly complete set of references is in itself reason enough to purchase the book...the book will be of unquestionable value to the students, as well as those engaged in semiconductor device research."—Solid-State Electronics

1969

812 pages

\$19.95

ADVANCES IN PLASMA PHYSICS, Volume 3

Edited by ALBERT SIMON, University of Rochester, and WIL-LIAM B. THOMPSON, University of California at San Diego

Covering current research in plasma physics, this volume includes three articles by specialists in their respective fields. The lead article contains a number of unusual mathematical approaches to well-known plasma problems as well as an analysis of more recent problems involving solution of the Vlasov equation in finite geometries. The second article presents a novel perturbation expansion of the electron Boltzmann equation to obtain the usual transport coefficients in a weakly ionized gas. The third contribution is a discussion of the method for treating nonlinear phenomema in plasma by the use of quantum-mechanical calculations.

1969 249 pages

\$14.95

THE APPLICATION OF MODERN PHYSICS TO THE EARTH AND PLANETARY INTERIORS

Edited by S. K. RUNCORN, University of Newcastle-upon-Tyne

This collection of 49 papers by 66 leading experts in the field reflects the results of the application of modern physics to problems of the earth's mantle and interior, and provides coverage of the progress which has been made to date.

"This book is another example of how the Advanced Study Institutes organized by Runcorn and his colleagues at the University of Newcastle have produced a number of important volumes which reflect good taste in the choice of important, forefront themes and in the selection of capable and stimulating participants."—Science

1969

692 pages

\$35.00

COSMIC RAY PHYSICS Nuclear and Astrophysical Aspects

By SATIO HAYAKAWA, Nagoya University, Japan

A Volume in the Monographs and Texts in Physics and Astronomy, edited by R. E. Marshak

The author discusses the astrophysical and nuclear-physical aspects of cosmic rays taking into consideration kinematics in collisions and decays and the results of cascade theory. An introduction to the general topic of cosmic rays is presented and the interactions of high-energy particles with matter are considered.

1969

774 pages

\$39.50

THEORY OF WEAK INTERACTIONS IN PARTICLE PHYSICS

By ROBERT E. MARSHAK, University of Rochester; RIAZUDDIN, University of Islamabad, Rawalpindi; and CIARAN P. RYAN, University College, Dublin

A Volume in the Monographs and Texts in Physics and Astronomy, edited by Robert E. Marshak

This comprehensive volume surveys both the present status and future promise of weak interaction theory. Because it summarizes a decade of intense activity in the field, it will be of special interest to advanced students and research workers in particle physics, as well as to nuclear physicists and astrophysicists

Highlights of the book include: the first thorough account of the very successful V. A theory of weak interactions; the consistent application of the current algebraic approach to all aspects of weak interactions; and two special, introductory chapters to make this book especially useful to the experimentalist—the first includes an historical summary and the second summarizes the mathematical apparatus required to follow the theoretical exposition. A detailed table of contents, extensive lists of references at the end of each chapter, and numerous, previously unpublished figures increase the utility of this work.

GALLIUM ARSENIDE LASERS

Edited by C. H. GOOCH, Services Electronics Research Laboratory, Baldock, Hertfordshire

"From theory to preparation to application, this volume of review articles offers physicists and engineers a convenient wrapup of the virtues and shortcomings of these p-n junction devices. Brief discussions of pulse generators, cooling techniques, optics and detectors will assist readers interested in applications...the readability and attention to fundamentals make the volume a worthwhile investment for persons interested in these injection lasers."—Laser Focus

1969

333 pages

\$14.50

WILEY-INTERSCIENCE a division of JOHN WILEY & SONS, Inc. 605 Third Avenue, New York, N.Y. 10016 In Canada: 22 Worcester Road, Rexdale, Ontario

BOOKS & JOURNALS A SPECIAL REPORT

tures (at the University of Colorado and University College London).

The author, a professor of physics at the University of Colorado, has published numerous articles on collision theory. Perhaps his most often referenced work concerned application of variational techniques to calculations of electron scattering by atoms.

I would recommend this book as a text for a graduate "topics" course or to students seeking an introduction to atomic-collision theory. Although the author is patient with his exposition, most readers will wish he had provided more extensive references to the literature. The meager bibliographies at the end of sections are too modest even to give proper credit to the author's own contributions. Serious students of atomic collisions will wish to follow this with the very thorough four-volume treatise by H. S. W. Massey and his coworkers, Electronic and Ionic Impact Phenomena (Oxford U. P., 1969).

Bruce W. Shore Associate Professor of Physics Kansas State University

The Technology Of Computer Music

By M. V. Mathews 188 pp. MIT Press, Cambridge, Mass., 1969. \$12.00

Electrical and electronic musical instruments have been with us for over 75 years, but have yet to achieve a place in the musical world comparable to that of conventional instruments. However, the current generation of electronic musical instruments has gone beyond conventional real-time performable instruments such as the electric organ. We now have a new kind of musical instrument, the programmable instrument, which does not normally work in real time, but contains storage and superposition features that allow complex musical structures to be generated one layer at a time, stored and superposed. The contemporary analog synthesizers, of which the Moog is the best known, are of this type. They now boast a very wide range of musical possibilities and

are still undergoing rapid evolution.

Outside this development, in a parallel route, lies the alternative possibility of dispensing entirely with musical hardware, and creating music by genmathematically-produced waveforms that are later converted to sound. A music-generating computer program does exactly this and, in addition, allows the most precise and detailed control of the sound. In computer-generated sound, every vestige of the technical difficulty of performance on ordinary instruments disappears, and everyone becomes a potential virtuoso, limited only by his imagination and his control over his willing and obedient orchestra.

In this book we have for the first time a complete although brief description of the pioneering effort of Max Mathews and his colleagues, which gave the world its first serious and artistically valid music-generating computer program. Mathews here describes the current version, Music V.

The book is divided into three sections. The first is a short exposition of the basic principles of computer generation, in digital form, of a sampled representation of the desired waveform. This part demands the greatest technical sophistication, which is needed for the explanations of the sampling process and its errors. Even here there is nothing more complicated than Fourier integrals. With suitable simplification, the nonscience undergraduate is capable of absorbing this material.

The second part is devoted to a sequence of tutorial examples, and includes a musician's guide to the use of the "orchestra" compiler that Music V still retains (but now, finally, in FORTRAN). That is, the user must define (with suitable unit generators

that simulate oscillators, adders, function generators and filters) the software equivalent of the kind of instrument he might patch together with cables on an idealized Moog synthesizer. Music V differs in this respect from ORPHEUS, an earlier all FORTRAN descendant of Music IV, in which there is just one all purpose instrument, defined once and for all.

游

-38

10

-10

Tiey,

11,0

M ap

No.

DE I

-1

=

30

and to

le to

Elm

34

Bet!

地

7 Tubes

037

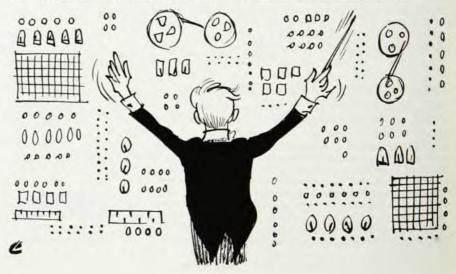
Pine

in the

State

purtit

4 Bose


[[g)ZE-2

d quan

bit, 200

The third part of the book, called the "MUSIC V Manual," is devoted to an exposition of the program itself and explains its operation in considerable detail. Given a copy of this manual, a printout of the program and a means of providing the digital-to-analog conversion for the computer output tape (any small computer with a magnetic tape input, a clock and a D-to-A converter will suffice), anyone with enough computer time can start his own orchestra.

The potentialities of computer produced music, shown by the existing output, easily exceed those of the much more popular analog synthesizers, such as the Moog. Even so, the world has paid little attention to this new technology; in particular, musicians, for lack of understanding and technical grasp, have tended either to ignore it in the hope that it would go away or to denigrate it as mechanical, or worse as "electronic." The new craft still languishes for want of active practitioners, although not for aspirants. What is lacking is not enthusiasm or ability, but computer time. Here lies the greatest fault of the new technology: The amount of computer time required is still too great to make extended performance on the computer anything but a plaything of the industrious rich-that minuscule plutocracy that commands big blocks of available time on a large computer.

