
INTERFEROMETRY WITH X RAYS
Interference patterns of diffracted x rays are so sensitive
to small displacements that we can see strains and
defects in crystals. Interest now is in absolute measurementsof
lattice spacings and fundamental constants.

Michael Hart and Ulrich Bonse

IN THIS NEW BRANCH of applied x-ray
optics, crystals that obey Bragg's law
of reflection are used as optical com-
ponents. The physics of these devices
is very simple and has long been avail-
able in the works of, for example, Max
von Laue and Paul Ewald. Construc-
tion and operation of x-ray interferom-
eters, however, had to await the arrival
of large, almost perfect, artificially
grown single crystals. In the five
years that have elapsed since the first
successful x-ray interferometer was
made12 only a few of the possible ap-
plications have been exploited.

What makes x-ray interferometry
such a useful technique? For x rays
the refractive index n of all materials is
just less than unity, about 1 — 10"5.
This situation makes conventional
specular reflection techniques unfea-
sible—the critical angle is very small
(about 1/2 deg), and the focal length
of lenses would be at least a few
kilometers. In contrast to the disad-
vantages for conventional optical tech-
niques are the advantages for inter-
ferometry, where the need is to
balance optical path lengths; the phys-
ical dimensions need only be accurate
to [1/(1 -n)]\= 105 A, a length of
the order of tens of microns.

Perfect crystals Bragg-reflect x rays
only over a very narrow range of inci-
dent angles, about 10"5 radians. The
degree of lattice perfection is, there-
fore, very important in determining
the relative phases of the beams that

an x-ray interferometer generates.
This sensitivity allows one to measure
phase shifts resulting from strains in
the diffracting crystals as well as shifts
caused by objects placed in the path
of an interferometer beam. X-ray in-
terferometers are used to make abso-
lute measurements of lattice spacings,
to compare these spacings, to char-
acterize defects in good single crystals,
to measure x-ray scattering factors and
to do x-ray phase-contrast microscopy.
Existing x-ray interferometers use both
Bragg-case diffraction, in which the
beam enters and exits from the same
surface of the crystal, and Laue-case
diffraction, in which the entrance and
exit beams are at different surfaces.
All applications to date, however, have
been with Laue-case diffraction.

Diffraction in crystals

We formulate the general problem of
x-ray diffraction by perfect crystals be-
fore we can discuss the special cases
that are used in interferometers. We
use a periodic complex dielectric con-
stant to describe the crystal and then
find the allowed waves. These are
the waves that satisfy Maxwell's equa-
tions as well as the Laue equation

Ko -j- h = (1)

Here Ko and Kh are the wave vectors
for the incident and diffracted waves,
and h is the reciprocal lattice vector
for the acting Bragg reflection (|K0|
= |K,,| ; h -1 = d, the Bragg spacing).

In most cases, it is not really useful to
think of two separate waves, the inci-
dent and the diffracted, inside the
crystal, but the separation helps in the
genera] formulation. When consider-
ing specific cases, we think instead of
the total wavefield inside the crystal.

At angles close to the exact Bragg-
reflection position, both wave vectors
end near the Brillouin-zone boundary.
We expect, from Maxwell's equations,
two solutions for each state of polari-
zation, and indeed we find waves with
wave vectors Khl, Kol> Kh2, Ko2 and
amplitudes Dhl, Dol, Dh2, Do2 such
that

KM - Kol = Kh2 - Ko2 = h (2)

That is, the wave is split close to the
Brillouin zone (analogous to the be-
havior of electron waves in band con-
ductors) into two complementary
waves, each of which satisfies the
Laue equation. In any real case the
incident wave, with time-dependent
amplitude 3V — DJ exp [2iri(vT
- Ko' • r) ] excites only certain wave-
fields in the crystal; allowed waves are
constrained by Snell's law

KM - Khl = Kol - Ko2 = A"1* (3)

Here z is a unit vector normal to the
crystal surface, and the extinction dis-
tance A"1 is a measure of the splitting,
as shown in figure 1. A is proportional
to the strength of the interaction in
the crystal, but varies with the angle
of incidence and is of the order of
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GEOMETRICAL RELATIONSHIPS between the allowed wave vectors K during
Bragg reflection. A and B are spheres of radius l / \ and are centered, respectively,
at the origin O and reciprocal lattice point H. The dispersion surface S is the locus
of tips of the allowed wave vectors in the diffracting crystal, and the normal, z, ties
these vectors to the incident wave vector K,,'. Note that A, the extinction distance, is
a function of the orientation of both Ko' and z. Subscript o refers to incident wave
and h to diffracted wave in the crystal, i and d are incident and diffracted waves
outside the crystal, and 1 and 2 are the two components into which each wave is split
as it approaches the region close to the Brillouin zone. —FIG. 1

(b) (c)

ANTINODES OF THE STANDING WAVEFIELD lie halfway between the atomic
Planes (vertical lines) for the thick crystal case (a) . For the thin crystal case, we may
choose the thickness so that the antinodes will lie either d/4 to the right (b) or d/4
to the left (c) of the atomic planes in the crystal. —FIG. 2

(1 — n)\ '. We need not carry out a
detailed solution of Maxwell's equa-
tions here but will instead consider
several special cases to understand how
the various diffracting elements in an
x-ray interferometer work.

Special cases

Consider a simple crystal structure in
which all of the atoms lie on the
family of planes rh = p, where p is an
integer. If the crystal is thick enough
there is only one wavefield present, the
wavefield that has nodes at the atomic
sites and maximal amplitude halfway
between the atomic nuclei. The other,
complementary, wavefield is essen-
tially totally attenuated by the inner-
shell electrons near the atomic sites.
That is, we find when we solve Max-
well's equations that Dhl/Dr^ = £,
~ 0 and D,,.,/Do., = £, < 0.

In the first x-ray interferometers, for
example, all of the x-ray optical com-
ponents were silicon crystals approxi-
mately 0.5 mm thick. For the 220
Bragg reflection of copper Ka radia-
tion (A = 0.154 nanometers) these
are effectively opaque to type-1 wave-
fields (the wavefields with antinodes
at the atomic nuclei). At this wave-
length almost all of the photoelectric
absorption in silicon is associated with
the K-shell electrons.

The total wavefield has intensity

1 +& + 2&cos(2,rhT) (4)

£., varies with the angle of incidence
of the primary wave.

We see then that wavefield 2 sur-
vives because it suffers less than nor-
mal photoelectric attenuation. This
"anomalous transmission" effect is well
known in good single crystals and was
first discovered by Gerhardt Borr-
mann.7

Outside the crystal we again form
two diffracted waves of amplitudes
£)„•' and fDi/1 (see figure 2a). To-
gether they make up the wavefield of
equation 4 inside the crystal and in
their overlap region. The crystal lat-
tice "phase locks" them to each other;
the crystal is a phase-coherent beam
splitter and a phase-maintaining mirror
that bends rays through twice the
Bragg angle.

For the other extreme, the thin-
crystal case, all four waves are present
and Dh,/Dol = fc > 0, Dh2/Do2 = $,
< 0. At the exact center of the range,
for the symmetric Laue case, £2 = ~$v
Wavefield 2 again has the inte:
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given by equation 4 and wavefield 1
has complementary intensity

|A[2 = |Au + A,i|2cc
1 + tf + 2& cos (27rh-r) (5)

All of the fields generated are phase
coherent, and the total field is

|D|2 = \Dhl + Dol + Db2 + Do2
 2 cc

2 + 2 sin (27rh'r) sin (27rA-10 (6)
where t is the crystal thickness.

Again the crystal is a phase-co-
herent beam splitter and an optical
mirror; outside the crystal we have the

LAUE-CASE interferometers. Phase-co-
herent beams are formed successively at
beam splitter S and transmission mirror
M, and culminate in an atomic-scale
standing wavefield at point P in front of
the analyzing crystal. —FIG. 3

two diffracted waves Do
a and Dh

d

generated from a standing wavefield
that fits onto the diffracting planes.

(Although we can not achieve zero
absorption conditions, we do have in-
terferometers with 0.2 mm-thick sili-
con or quartz wafers that we have op-
erated with molybdenum Ka (A =
0.071 ran) and silver K« (X = 0.056
nm) radiation. Here the two wave-
fields do not have exactly equal intensi-
ties, but the essential features de-
scribed by equation 6 are the same.)

The situation here is more compli-
cated than is the first case, because
the last term in equation 6 is a periodic
function of t. The thickness influ-
ences both the amplitude of modula-
tion and the position of the intensity
field with respect to the crystal, as can
be seen in figures 2b and 2c. By a
suitable choice of thickness, we can
use the crystal either as an ideal
mirror [t = pA or t = (p + 1/2)A]
or, with t = (p ± 1/4) A, as an ideal
beam splitter. In practice we get high
intensity because we use a slightly di-
vergent incident beam rather than a
plane wave. A disadvantage of the
range of incident angles is that the
ideal crystal thickness does not have
a unique value, but has a range, be-
cause of the variation of A.

In the Bragg case the orientation
of the diffracting planes is such that
Ko is directed into the crystal whereas
Kh points out of the front surface of
the crystal. The diffracted wave Dh

d

comes out at the front surface, and
some energy flows into the interior of
the crystal to form a standing wave-
field. If the crystal is very thin, some
energy reaches the rear surface of the
crystal plate, where a second diffracted
wave Do

a is emitted. The two emitted
waves are phase coherent, because the
standing wavefield inside the crystal
couples them. We have made x-ray
interferometers with Bragg-case opti-
cal components in our laboratory and
obtained adequate intensity for photo-
graphing fringe patterns by using sili-
con crystals a few tenths of a milli-
meter thick.

Interferometry

Applied x-ray interferometry has to
date used Laue-case diffraction in all
of the optical components, because the
physical parameters are easier to work
with. Figure 3 shows the layout of a
Laue-case interferometer that uses
thick crystals. In each wafer only one
pair of waves is present. The condi-
tion that the wavefield-intensity max-

ima must lie between the planes of
atoms dictates the phase of the newly
generated wave. (See equation 4.)

Had we chosen instead to illustrate
the thin-crystal case, we would have
had intensity maxima in the standing
wavefield outside of each crystal as in
figures 2b and 2c, either 1/4 d to the
right or 1/4 d to the left of the planes
of atoms. In either case, a standing
wavefield is formed at P, and the rela-
tive phases of the waves arriving along
the two paths to P determine the posi-
tion of these fringes. The analyzer
crystal A transforms the atomic-scale
fringe pattern at P into a macroscopic
pattern that we can observe either on
film or with a counter in one of the exit
beams. This macroscopic pattern is
simply the moire pattern resulting
from the superposition of the atomic-
scale standing-wave pattern at P with
the atomic planes of A. If we intro-
duce inhomogeneous phase shifts into
one of the arms of the interferometer,
either the orientation or the spacing of
the standing wave pattern will be
changed. We will then observe either
a rotational or a dilational moire pat-
tern, or a pattern that is a combination
of the two.

What happens if we displace the
diffracting wafer by a distance c with
respect to the x-ray source? The phase
of Do

a is unchanged, and the phases of
the reflected waves Dh

a are altered by
2TT he. The relative positions of all
parts of an interferometer, therefore,
must be maintained so that hx >̂ 1
or |c| < 1<}-2 nm. For this reason
most x-ray interferometers made so far
have been cut as monolithic blocks
from highly perfect crystals. There
are, of course, advantages to this ex-
treme sensitivity, and we can exploit
it to measure displacements of the
order of 10~2 nm.

Placing a phase-shifting object in
either of the interfering beam paths
causes changes in the position of the
standing-wave pattern at P. A lens-
shaped object, for example, forms a
moire pattern similar to the well
known Newton's-ring pattern in light
optics.8 An object of material thick-
ness between one and 50 microns
typically causes a phase advance of
2rr, and x-ray interferometers have
been used to measure material thick-
ness9 as well as to measure x-ray
refractive indices1011 and atomic-scat-
tering factors for x rays.

X-ray interferometers have signifi-
cant advantages for these determina-
tions. Traditional x-ray methods of
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TWO DISLOCATIONS IN A SILICON INTERFEROMETER cause rotational moire pattern ( a ) .
Reciprocal lattice vector h is 220, and field is approximately 4.5 mm by 4.0 mm. Copper K<* ra-
diation was used to obtain the pattern. Elastic strains in silicon caused by evaporating four thin
aluminum-film discs on to the analyzer crystal can also be seen in a moire pattern ( b ) . The discs,
each of diameter 5 mm, vary in thickness up to 500 nanometers. Molybdenum Kai radiation was used
to obtain the pattern; here again the reciprocal lattice vector is 220. —FIG. 4

measuring material thickness for ex-
ample, are based on absorption, which
increases as the fourth power of the
atomic number Z. For heavy atoms,
the absorption is very high, whereas
the method is insensitive for light
atoms. Phase advance, on the other
hand, increases linearly with Z. To
measure n with, say, a prism, we
would need a large-angle prism (be-
cause n a; 1). Again, absorption

causes difficulties. We have been able
to improve the precision in measuring
atomic-scattering factors by about an
order of magnitude.

No one has as yet exploited x-ray
interferometers in phase-contrast mi-
croradiography. This technique
would be useful in studies of biologi-
cal materials; sensitivity is retained
even in the analysis of light elements,
and we can distinguish between car-

Michael Hart (left) and Ulrich Bonse will receive the American Crystaliographic As-
sociation's Warren Award this month for work, described in this article, that the two
did together at the Cornell University department of materials science and engineer-
ing- Hart, who received his PhD from the University of Bristol in 1963, is presently
on leave from his post as lecturer in physics at Bristol; he is a US National Academy
°f Sciences senior research associate at the NASA electronics research center in
Cambridge. Now professor of physics at the University of Munster, Bonse re-
Wived the Diplomphysiker in 1955 and was awarded a Dr. rer. nat. habil. in 1963.

bon, nitrogen and oxygen even with
material only a few microns thick.

Lattice parameters

If one or more of the diffracting wafers
of an x-ray interferometer is strained,
then a moire pattern is generated in
the exit beams O and H. When we
strain one wafer homogeneously, so
that its reciprocal lattice vector be-
comes h + §h, the reciprocal vector
of the moire pattern is Sh. For a small
rotation <f>, we see moire fringes par-
allel to h with a spacing AR = d/<f>,
whereas a small dilation Sd/d pro-
duces moire fringes normal to h with
spacing AD = d2/Sd. Both these
simple cases have been demonstrated
quantitatively with a Laue-case inter-
ferometer.12 Because we can measure
fringe spacings up to 2 cm, we can de-
tect lattice rotations (j> ~ 10~8 rad or
dilations Sd/d 55 10-8.

Inhomogeneous strain also produces
moire fringe patterns in the exit beams.
For example, crystal dislocations in the
interferometer wafers cause fringe dis-
locations in the moire pattern. Figure
4a is a rotational moire pattern with
<j> ~ 0.13 sec arc, and shows two dis-
locations of opposite sign in a silicoi
interferometer. From the
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[112] [110] = h

(a)

SCANNING X-RAY INTERFEROMETER. Two-part design (a) is for absolute measurement of
lattice parameters. Crystal block Ci is translated parallel to h on a specially constructed traversing
device. Relative orientations of Ci and C2 are controlled with multiple Bragg reflections in the tun-
nel T and through the interferometer wafers S, M and A. Scanning interferometer may also be a
monolithic structure (b) . A push in the appropriate place translates the analyzer wafer A on block
C. This pushing causes elastic deformation of the two bent leaf springs Si and S2, and translation
parallel to h. The silicon crystal is almost perfect, so that it can tolerate large strains without under-
going plastic deformation; a 0.7 mm range has been obtained on a device only 30 mm high. —FIG. 5

value of d and the observed number of
extra half fringes, we can measure di-
rectly the dislocation (Burgers) vec-
tor: b — 1/2 < 110 > = 0.384 nm.
We have observed many other intrinsic
strain patterns in silicon, quartz and
germanium interferometers,13 and con-
sider we have an extremely sensitive
method for detecting and characteriz-
ing strains in single crystals.

We have also used moire mapping
of large crystal areas to measure inten-
tionally induced strains in otherwise
perfect crystals.14 In the manufacture
of a semiconductor one might diffuse
in some impurity locally; moire map-
ping can determine how much has
been diffused in. If an impurity in-
troduced into a silicon crystal, for ex-
ample, has a covalent radius 10%
different from that of silicon, one part
per million of the impurity will change
d by one part in 107. We can see this
strain with moire mapping.

In figure 4b we see the moire pat-
tern formed when four aluminum discs
of various thicknesses were evaporated
onto the analyzer wafer of a thin-
crystal Laue-case interferometer. Re-
petitive exposures, with and without
the discs present, prove the strains to

be purely elastic; they are simply bi-
metal strains caused by the difference
in thermal-expansion coefficients be-
tween silicon and aluminum. Maxi-
mal strain occurs at the center of the
thickest disc where the moire spacing,
0.2 mm, corresponds to 8d/d = 10~6.

Perhaps the most important applica-
tion discovered so far for the Laue-
case interferometer is in metrology and
fundamental constants. If we displace
the analyzer of an interferometer by
an amount c, a phase shift of 27rhc
in the output beams results. - If we
shift the analyzer parallel to h, but
with otherwise perfect control of orien-
tation and stability, one moire fringe
will be recorded in the exit beams
when c-h changes by unity, whatever
x-ray wavelength is used. If displace-
ment is simultaneously measured2 with
an optical interferometer, we have a
way to measure lattice parameters
without a measurement of x-ray wave-
length. The measurement results in a
much needed secondary standard of
length equal to the lattice spacing of
the analyzer crystal. In addition,
measurements of the crystal density
and atomic mass permit one to deter-
mine Avogadro's number.

If we cut the interferometer into
two parts, which are then reassembled
on adequately stable goniometric and
translation stages, we can make trans-
lations of the analyzer crystal. Erich
te Kaat and one of us use designs such
as the one in figure 5a to measure16'16

absolute lattice parameters; Richard
Deslattes at the US National Bureau
of Standards later adopted17 the de-
sign for the same purpose.

In this design, control of the rela-
tive orientations of the two separated
crystals about the [1 1 1] axis (the ro-
tational moire axis) is achieved by
x-ray beams from an auxiliary source.
These beams are multiply Bragg-re-
flected by the 224 and 224 planes that
form the top and bottom walls of the
tunnel between the two crystals. The
translation stage makes extensive use
of elastic design principles.

A group of workers from the Univer-
sity of Bristol and the National Physi-
cal Laboratory (UK) have adopted1811

a rather different approach. The x-ray
interferometer and the elastic spring-
strip translation stage are all part of
the same almost perfect crystal (see
figure 5b). Pushing at the appropri-
ate point results in a translation of
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the analyzer wafer parallel to h. This
system is very stable and, of course, is
prealigned. Special miniature optical
components are, however, needed in
the associated optical interferometer.

At a time when traditional x-ray
methods no longer have a significant
role in determining the fundamental
constants of physics, it is exciting that
these new devices should soon produce
significant advances in our knowledge
of these constants.

Because each component in an x-ray
interferometer may use thick or thin
Laue-case diffraction or Bragg-case
diffraction, and because the interfer-
ometer can be cut in one or more parts,
there are many possible designs.
Some have been put into practice8'20'21

and others have very interesting and
useful characteristics,22 but the vast
majority still await exploitation.
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