Serpukhov Data Are Highlight at Regge-Pole Conference

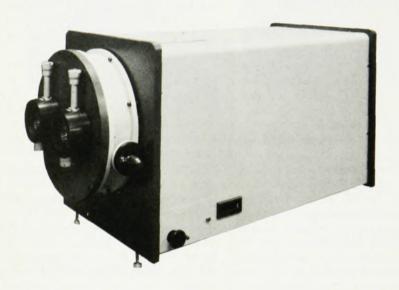
Interest at a recent Regge-pole conference appeared to center on the total cross-section data from the Serpukhov accelerator, Regge cuts, duality and multiparticle production. Substantial progress has been made in Regge-pole models in the past year, and 170 people gathered at the conference, which took place at the University of California, Irvine, on 5 and 6 Dec., to assess the present situation and establish the direction for future progress. (For some understanding of Regge-pole theory and its applications to high-energy physics, see the article by Gerald Hite in Rev. Mod. Phys. 41, 669, 1969.) Summary talks covered the experimental situation, phenomenological analyses and theoretical models; this program was preceded by a session of contributed papers.

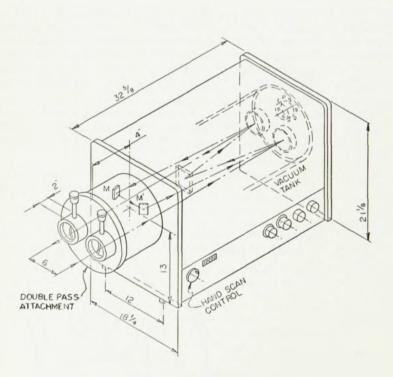
The contributed-papers session started with two experimental talks: Paul N. Kirk presented the results of an Argonne National Laboratory–University of Michigan collaboration on the differential cross section for π^+ p \rightarrow K⁺ + Σ^+ and the polarization of the Σ^+ at 3 and 5 GeV; D. Hywel White (Cornell University) reported on a measurement of π^- p \rightarrow n π^0 at 6 GeV in the back-scattering region.

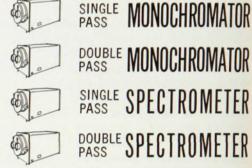
Robert Carlitz (California Institute of Technology) showed that if one treated the angular momentum continuation of a sequence of positive-parity fermion resonances as is done in the van Hove model, these resonances could appear without the negative-parity doubling states at the expense of a fixed cut in the J plane. Rudolph C. Hwa (State University of New York, Stony Brook) considered a bootstrap model of the Pomeron in which the inelastic processes are dominated by diffractive fragmentation as given by the Yang model. Alberto Pignotti (University of Washington, Seattle) presented a method of generating Regge cuts with full connected unitarity that agrees with the absorption-model cut corrections to Regge-pole exchange.

Serpukhov. Three talks covered data from the 76-GeV accelerator at Serpukhov, USSR, on the flattening off of total cross sections. Dean (Vanderbilt University) showed that his earlier calculations of TN total cross sections from a multiple-scattering quark model agreed with the Serpukhov data. (The multiple-scattering model could be considered as a prescription for introducing cuts.) According to Frank Steiner (Karlsruhe) the Serpukhov data imply that the isospin-even TN forward amplitude does not behave at infinity like a simple Regge pole (presumably a cut or "dipole" behavior, as discussed later by Vernon Barger, of the University of Wisconsin, would satisfy the dispersion relation). David Horn (Cal Tech) explored the interesting possibility that the conventional Regge expansions and the Pomeranchuk theorem fail above 30 GeV. (The ratio of the real to imaginary parts of the forward-scattering amplitudes must then increase as log E. See Richard Eden, High Energy Collisions of Elementary Particles, Cambridge U.P., 1968.)

Douglas R. Morrison (CERN) reviewed the experimental results of two-body production processes; the vast amount of data and the accuracy of some of the results is very impressive. He covered the presence and movement of peaks and dips in detail, and discussed tests of duality. Morrison presented the Serpukhov data on π^- p, π^- n, K-p, K-n, pp and pn total cross sections from 20 GeV to 65 GeV; they are essentially flat above 30 GeV. The Regge-pole analyses made at lower energies do not, of course, fit the data when extrapolated to these energies. Morrison then commented that, historically, Regge-pole analyses, when applied to known experimental results or interpolated between known data, have been successful. Extrapolation or application to new processes however, has very often been unsuccessful.


Barger summarized the Regge analysis of high-energy two-body processes. Despite the great success of


PROGRESS OF THE QUARK, as described by Claude Lovelace: "The quark loop moves along inside like the boa constrictor's lunch, so that a meson box turns into a vertex part, then into a self-energy part, and finally to a tadpole."


6-WAY STRETCH

FOR YOUR RESEARCH DOLLAR

SPEX 1500DP Double Pass Evacuable Spectrometer may be operated in any of six different modes:

The double pass feature of this instrument lets you increase the luminosity especially in the infrared to enhance detector response and source outputs. Without sacrificing resolution, you can often double the signal level; conversely, you can often double resolution without sacrificing signal level.

Curious? Ask for proof.

2 (201)-549-7144

We have job openings for persons reasonably knowledgeable about current trends in spectrometer instrumentation. Phone us collect.

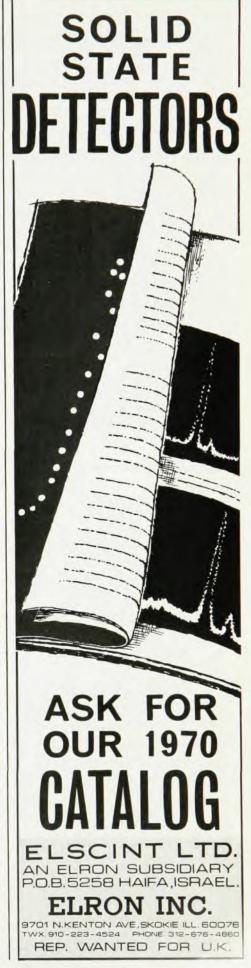
INDUSTRIES INC. / P.O. BOX 798 / METUCHEN, N.J. 08840

the poles-only models, these models give a number of embarrassing results –for example, the absence of certain predicted dips at nonsense points of the exchanged trajectories, and the apparent constancy of the Serpukhov π^- and K^- total cross-section data. These are difficulties that are easily eliminated by Regge cuts. Barger advocates use of "effective" Regge poles (effective ρ pole represents ρ pole + ($\rho \times P$) cut and ρ' represents ($\rho \times P'$) cut, for example) until the nature of these cuts is better understood.

He emphasized the role that continuous-moment sum rules play in constraining the Regge analyses. The $\pi^{\pm}\rho$ data up to 26 GeV yield a slope for the Pomeron trajectory of about 0.4. Over the 2–30 GeV range the five poles $(P, P', \rho, P'', \rho')$ accurately represent the elastic and charge-exchange interactions. The Serpukhov data can not, of course, be fit by extrapolating lower-energy pole fits.

Barger found that cuts can reconcile the K±P data with the Pomeranchuk theorem because they push asymptopia to astronomically high energies. He also presented a fit with effective dipoles and poles in which the Pomeranchuk theorem is violated and σ increases as log E. Analyses of backward-scattering data for a number of reactions has been done with baryon-exchange models. Models with exchange-degenerate trajectories (consistent with duality) appear to be good first approximations for the present data. Nondegenerate residues, however, are needed to fit a number of details

Poles and cuts. Marc H. Ross (University of Michigan) discussed those phenomenological analyses, up to 30 GeV, that use poles and cuts. A number of different groups are doing these calculations, but have major differences in their models. differences include the form of the Regge pole, the expected size of cuts and the applicability to elastic scattering. Ross confined his talk to the calculations, done at Michigan, in which the Regge poles are not assumed to have nonsense wrong-signature zeroes (in contrast to the usual treatments), and the cut has a free parameter to include inelastic intermediate states.


Destructive interference between poles and cuts (which are then necessarily large) explains the observed dips. This approach is in contrast to the other treatments (with "weak" cuts) in which the dips are produced by the nonsense wrong-signature zeroes in the residues of the poles. Preliminary qualitative fits (of 4-5 parameters on the average) to a large number of reactions were shown. A crucial problem (of all models) is understanding which reaction will have a dip and which will not. In Ross's model the presence or absence of a dip depends on the relative importance of the helicity flip and nonflip amplitudes. Presumably polarization data will help settle this question.

Finite energy-sum rules and duality have been connected with the most exciting developments in Regge-pole theory in the last two years. In a review Haim Harari (Weizmann Institute of Science, Israel) noted that most recent work has centered on experimental checks of Regge-trajectory exchange degeneracy and the magnitude of exotic exchanges. Useful tests of whether or not two trajectories are exchange degenerate are obtained by comparing line-reversed reactions of the type $A + B \rightarrow C + D$ with C + B $\rightarrow \overline{A} + D$ (for example, $K^-p \rightarrow \overline{K}^0 n$ and $K+p \rightarrow K^0 n$). If the trajectories dominating these processes are exchange degenerate, the two cross sections should be equal.

Until recently the experimental searches for exotic exchanges have centered on processes dominated by such an exchange. Searches are now proceeding for interference between exotic and nonexotic exchanges that determine the size of the exotic amplitude and not its square. Preliminary results indicate a 10% exotic exchange. Whether this is because of poles or cuts is unclear. Regge cuts and their relation to duality is a major open topic.

A very important product of duality theories and finite energy sum rules has been the Veneziano formula. Claude Lovelace (CERN) discussed theoretical questions and the Veneziano formula as a phenomenological tool. New theoretical ideas have concentrated on a factorization scheme that will permit the inclusion of unitarity without horrendous divergence problems. These divergences occur because of the vast number of resonances appearing in this model. Aside from divergence difficulties, one also needs an interpretation for the large number of states.

As the application to fitting two-

MAXIMIZED VALUE...more, more and more modules from Mech-Tronics Nuclear

HIGH VOLTAGE SUPPLIES

a	0
100	NF.
T	35
U	
de	

	HIGH VOLTAGE SUPPLIES			
	 Model 250 Dual 0-1.5 kV SS Detector	0		
	Model 253 0-3kV SS Detector	0		
PREAMPLIFIERS				
	Model 400 General Purpose Preamp			
	• Model 401 F.E.T. Preamp	0		
	• Model 402 Lo-Noise F.E.T. Preamplifier (1.8 KeV-10 pf; 0.04 KeV/pf) 225.0	0		
	• Model 403 Lo-Noise F.E.T. Preamplifier (1.1 KeV-10 pf; 0.02 KeV/pf) 250.00	0		
	 Model 404 F.E.T. Preamplifier (3.5 KeV-10 pf; 0.05 KeV/pf)	0		
	Model 450 Freamplifier Flobe Assembly Model 451 X-Ray Preamplifier Assembly	0		
	AMPLIFIERS			
	Model 500 Pole-Zero R.C. Shaped	0		
	Model 501 Sectionalized Active Filter Amplifier	0		
	Model 502 Biased Amplifier (with Gate input)	0		
	Model 503 Linear Gate			
	• Model 504 Dual Linear Gate			
	Model 505 Linear Gate/Baseline Restorer	0		
	Model 506 Delay Amplifier	0		
	Model 507 Fulse Shaper Model 508 Baseline Restorer			
	Model 510 Spectroscopy Amplifier			
	TIME ANALYSIS			
	Model 900 Fast Coincidence			
	Model 901 Slow Coincidence			
	Model 904 Pile-up Rejector			
	Model 800 Logic Delay)		
	AMPLITUDE ANALYSIS			
	Model 600 Timing Single Channel Analyzer)		
	Model 601 Timing Strobe)		
	Model 602 Spectroscopy Single Channel Analyzer Model 603 Strobed Single Channel Analyzer)		
	Model 604 Integral Discriminator)		
	Model 605 Dual Integral Discriminator)		
	Model 1000 Pulse Generator)		
	DATA ACCUMULATION/READ OUT			
	Model 700 Six Decade Scaler)		
	Model 700 Six Decade Scaler 475.00 Model 701 Preset Six Decade Scaler 495.00			
	Model 702 Preset Six Decade Scaler/Timer			
	Model 703 Serial Printing Six Decade Scaler			
	Model 704 Serial Printing Preset Six Decade Scaler			
	 Model 705 Serial Printing Preset Six Decade Scaler/Timer			
	Model 706 Parallel Printing Six Decade Scaler			
	Model 707 Parallel Printing Preset Six Decade Scaler			
	Model 708 Parallel Printing Preset Six Decade Scaler/Timer 635.00			
	Model 750 Five Decade Timer			
	Model 751 Six Decade Serial Printing Timer			
	Model 775 Linear/Logarithmic Ratemeter			
	Model 776 Linear Ratemeter			
	Model 801 Serial Readout Interface			
	Model 802 Parallel Readout Interface			
	Model xxxx Your system—We're flexible, lets discuss			
	what your data system needs are.			

compare our specifications, ask for a demonstration in your laboratory.

or call us directly (312) 344-2212, collect if you wish... you'll be glad you did!

Mech-Tronics

NUCLEAR

1723 North 25th Avenue, Melrose Park, Illinois 60160

BINS AND MODULE KITS	
Model 150 Instrument Bin—Nylon Guide Rails	92.00
Model 151 Instrument Bin with Wired Connectors	250.00
Model 152 Instrument Bin/Class A Power Supply	
Model 153 Instrument Bin/Class A Power Supply with Line Filter	
Model 100 Series Module Kits	

body processes has been much discussed recently, Lovelace concentrated on the generalizations of the Veneziano formula to multiparticle processes (Bn), and their use in fitting experimental data. He emphasized that fits are good if the data are accurate only to about 10%. Better data require modification of the process. An impressive amount of data have been fitted by Hong Mo Chan and coworkers at CERN, and the speaker urged other groups to enter into the "Traditional multi-Regge fits are about as competitive against B₅ as horses against a tank. I certainly hope that Chan's American competitors are not going to submit fairly to annihilation "

Multiperipheral model. The theoretical motivation for the multiperipheral model and its generation of inelastic contributions to unitarity in bootstrap models were discussed by Geoffrey F. Chew of the University of California, Berkeley. The basic feature of this model is that multiparticle production proceeds along a peripheral chain, and blobs of particles are emitted. As the energy increases only the particle number and distribution of longitudinal momenta can change. This model is a version of C. N. Yang's "limiting distributions." (Chew noted that, at present energies, the end effects of the chain are still important.)

Chew emphasized the utility of this model in bootstrap calculations and in schemes for generating Regge poles and cuts. Most methods use the multiperipheral model to obtain amplitudes for the production of N particles and, through the use of unitarity, an elastic amplitude. This elastic amplitude will now exhibit poles and cuts that one tries to identify with known exchanges.

In the bootstrap version one requires that the output amplitude be in some way related to the input. There are two versions (not necessarily contradictory): Exchange of a series of dominant trajectories, such as the Pomeron, and an attempt to find an amplitude similarly dominated by the Pomeron with the same parameters; the dominant exchange is a low-mass system such as a pion, and the inputoutput compared are the π - π scattering amplitudes.

Edmond L. Berger (Argonne National Laboratory) discussed in detail the dominant features of multiparticle-

production data. He then summarized the use of multiperipheral models to fit the production data. Success in obtaining a good fit should not be taken as confirming the details of a model. This warning applies to the multiperipheral model and to its competitors, in particular, the multi-Regge model developed by Chan, Laskiewicz and Allison.

Berger concluded that we really have several multiperipheral models, each successful in a different region of multiparticle phase space. Synthesis of these fragments is a task for the next generation of models. The major problem is to have one model that both fits the region of high subenergies and extrapolates successfully to the resonances. Perhaps the Veneziano approach will evolve into this new generation model.

To what extent is Regge-pole theory applicable to nonstrong processes that involve hadrons? Henry D. Abarbanel (Princeton) in his review remarked that the temptation is to use them as one would in purely strong processes; yet one knows that there may exist fixed poles and, in some cases, singular residues. We know that such anomalies occur in amplitudes relevant to current algebra and in Compton scattering. Do they occur in other processes? A definite answer must await high-energy neutrinoscattering experiments. However, processes that were suspected to contain fixed poles in their amplitudes do not have these anomalies, at least not to the accuracy that one can evaluate certain sum rules (for example, the Drell-Hearn sum rule) or study reactions such as backward pion photoproduction. The moral here is that unless fixed poles are necessary they should be ignored. Even with this problem removed the applicability of Regge-pole models to weak processes is a question that will have to await future experiments, especially inelastic electron and neutrino scattering.

> Myron Bander Gordon L. Shaw University of California, Irvine

The conference sponsor was the AEC. The proceedings, which consist of the papers of Barger, Ross, Lovelace, Chew, Berger and Abarbanel as well as the abstracts of the contributed papers, are available for \$6.00. Write to Regge Pole Conference, Physics Dept., University of California, Irvine, Calif. 92664, for copies of the proceedings.

