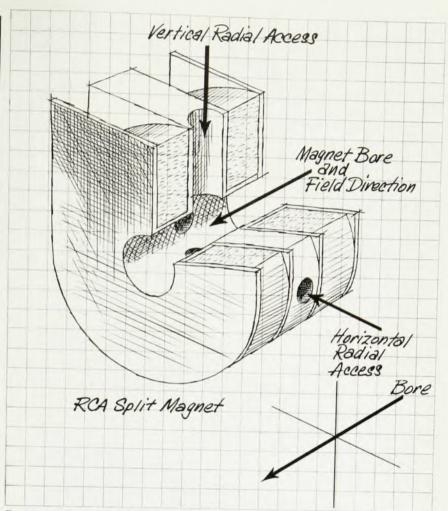
do not question the usefulness of physics to society, which is defended in the editorial. Indeed, this is precisely the point-science has been too useful. Technological change is now overwhelming the capacity of society to adapt. For example, the editorial points to cardiac pacemakers as one of the beneficial applications of transistors at a time when we are rapidly becoming aware that the control of death has created the most difficult problem ever to face human kind. Does anyone seriously believe that the resources exist to support the entire population of the world at the technological level of the US?

David Inglis has described science as a gourmet feast spread before us on a table whose end we cannot see; we, he says, are gourmandizing. question is not one of sacrificing scientific research for the short-range benefit of immediate social gains and thus mortgaging our future, as your editorial puts it; it is rather one of postponing some of our research to the future in the hope that society may have a future. Or do we feel that we must accumulate as much scientific knowledge as possible to clutch to our bosoms as we sink in the ultimate catastrophe?

The future of scientific research really depends upon there being some scientists to carry on the tradition; their numbers are unimportant. Though there is certainly research that needs to be done, even in the golden age scientists chose between problems. I suggest that for a few years at least we ought to guide our choices toward the research that has a stabilizing rather than a destabilizing effect upon society, and even award our academic honors and our Nobel prizes in the same way.

BRUCE HAWKINS Smith College


Tachyons

I considered the superlight region by associating relativity theory with thermo-fluid-dynamics by means of the first law of thermodynamics. Doubtless Bilaniuk and Sudarshan's approach (May 1969) is superior.

References

M. Z. v. Krzywoblocki, Acta Physica Austriaca 13 no. 4, 381 (1960); 14 no. 1, 22 and 39 (1961); 14 no. 2, 239 (1961); 15 no. 3, 201 and 251 (1962); 15 no. 4, 320 (1962), and 24 no. 4, 291 (1966).

M. Z. v. Krzywoblocki Michigan State University

Look Into
This 100 kG
Split-coil Magnet
for Research

Versatility!

· 2.5" horizontal bore

 Four 1.2" optical access ports at right angles to each other

Uniform 100 kG field

Harrison, N.J. 07029

 Homogeneity to within 0.4% in 1 cm spherical volume

- and the unit can be "tailored" to the exact needs of your project. If your project involves high magnetic fields, your plans should involve RCA. Pick from superconductive magnets with ranges from 20 to 150 kG field. bore sizes from 1" to 20" and homogeneities to within 0.001%/cm For full information on the range of RCA Superconductive Magnets and matched system components or RCA copper-clad Nb3Sn ribbons, write: Marketing Manager. RCA Superconductive Products, Section DDC-159 415 South 5th Street

