

Xenon. We have it for you pure and ultra pure. In a variety of pressures and containers.

For this year's catalog, write: Rare and Specialty Gases Dept., Airco Industrial Gases, 575 Mountain Avenue, Murray Hill, N.J. 07974.

is negligible. "The influence of matter starts at a later stage when the universe expands a little. At the later stage the influence of matter becomes stronger and stronger, and we come from this isotropic origin to the present, isotropic state. What about the future? The Einstein equations are nonlinear. Our result shows a singular behavior is possible, but a nonsingular solution is also possible."

Misner told us that because the mathematics is completely symmetric between the beginning and the end, once the universe changes from its present expansion, a singularity will occur in the future. However, the transition from expansion to contraction is not a clear prediction of the theory; it only occurs in closed models.

Landau Institute. Despite the fascinations of cosmology, Khalatnikov has also been interested and active in quantum field theory, and most of all, solid state. For twenty years he collaborated with Landau, until the automobile accident in 1962 that ended Landau's professional career. They both worked in the Institute for Physical Problems, headed by Peter Kapitsa. "Kapitsa discovered superfluidity and Landau explained it," Khalatnikov said. From the beginning Khalatnikov specialized in superfluidity: he wrote a book in the Frontiers in Physics series, "Introduction to the Theory of Superfluidity" (Benjamin, New York).

When it became clear that Landau would not recover, a group of his collaborators at Kapitsa's institute decided to found a new institute, and after his death it was named in his honor. The founders were: Khalatnikov, Alexei Abrikosov, who specializes in solid state and highenergy physics, Igor Dzheleshinski, well known in theory of magnetism and problems in statistical physics, and Lev Gor'kov, one of the leading physicists in superconductivity.

"Then some people from different places joined our group: Mark Az'bel is well known in theory of metals and wave propagation in metals. Anatoly Larkin is a universal man, working most recently with Lev Aslamazov (a young man from our institute) on the influence of fluctuations on the resistivity of superconductors near the transition point (paraconductivity).

"Emmanuel Rachba is an expert in theory of excitons, semiconductors and ionic crystals. Gerasim Eliashberg is a very talented man, who works in nonstationary properties of superconductors, collaborating with Gorkov. Valery Pokrovskii (who came to us from Novosibirsk) works in high-energy physics and superconductivity; his most famous work was with Alexander Patashinskii—some of the first work on theory of phase transitions was done by them."

Dzheleshinski's work on high-tempearture superconductors has been significant, Khalatnikov noted. William Little had suggested one could make organic-type superconductors with high transition temperature, using a one-dimensional polymer. Then Pierre Hohenberg, basing his work on that of Nikolai Bogoliubov, showed that one cannot achieve superconductivity in one or two dimensions. But Dzheleshinski showed one can have some systems close to one dimensional (in which the interaction is much stronger in one direction than in the others) that could be superconducting at high temperature.

The institute has about 11 or 12 men with doctor's degrees (roughly equivalent in prestige to being a fellow of the American Physical Society); it has around 20 "candidates" (roughly the same as our PhD), about 15 graduate students and some undergraduates. The institute has the right to give scientific degrees and diplomas. Its location, Chernegelovga (it means a small black hat) is a new scientific center, which contains a few different institutes—physics, solid state, chemistry.

References

- V. A. Belinski, I. M. Khalatnikov, Zh. Eksperim. i Teo. Fiz. 56, 1700 (1969);
 Zh. Eksperim. i Teo. Fiz., December 1969
- C. W. Misner, Phys. Rev. Lett. 22, 1071 (1969); Phys. Rev. 186, 1328 (1969).

SIN to Begin Accelerating Before the End of 1973

SIN (Schweizerisches Institut für Nuclearforschung, or the Swiss Institute for Nuclear Research) has begun to prepare the site for its meson factory

at Villigen near Zurich. The design of this machine was recently discussed by Jean-Pierre Blaser. A variableenergy cyclotron will accelerate pro-

THE NEXT STEP in Auger Spectroscopy Equipment

Would you like to monitor the chemical composition of a solid surface during treatment? If so, the PHI Cylindrical-Auger electron optics system may be the instrument you've been looking for. This unit allows the Auger spectrum to be displayed on an oscilloscope . . . you see what happens as it happens. It is compatible with most existing UHV systems; allows the use of small, low density electron probe beams; and speeds up routine Auger spectroscopy measurements by at least an order of magnitude.

Sound interesting?

Think PHI

PHYSICAL ELECTRONICS INDUSTRIES, INC.

subsidiary of Bayfield Technologies, Inc.

7267 SOUTH WASHINGTON AVENUE DINA, MINNESOTA 55435 (612) 941-5540

Build your own optical laboratory

MODEL 101 QUANTUM RADIOMETER

Measures watts and photons per second
☐ 0.1% long term measures watts and photons per second ☐ 0.1% long term stability ☐ Reliable silicon IC design ☐ Precalibrated plug-in probes and wide range of accessories ☐ Digital readout ☐ Seven decade autoranging ☐ "Sample" and "hold" remote programming ☐ Binary coded decimal and analog outputs

Make absolute radiant measurements from UV to IR with this versatile plug-in radiometer. Instrument parameters are permanently set to within 0.1%. Select any precalibrated probe shown, plug it in and read out in absolute physical units. Model 101 (without probe) \$2,490.00.

Probes are precalibrated to measure in units of watts, watts/cm² and photons per second within a user selected waveband. Different probes automatically compensate for specific measurement conditions. Match the probe to your application and measure with confidence. NBS traceable calibrations available.

STANDARD RADIOMETRIC PROBE, 1111N

□ 4% absolute accuracy for any narrow spectral band from 400 nm to 1100 nm Temperature compensated measurements from 10-10 to 10 watts.

Repeatability 0.2% per month non-cumulative, 1% per year Price: \$290.00

UV RADIOMETRIC PROBE, 1121N

□0.5" square solid state silicon detector measures any narrow spectral band from 200 nm to 1000 nm Temperature compensated measurements from 10-10 to 0.1 watts ☐ Repeatability 0.3% per month, 2% per vear

Price: \$420.00

FLAT PHOTON RESPONSE PROBES, 1112N, 1392N

Measure quantum sources from 109 to 1019 photons per second* Flat photon response within 3% from 600 nm to 900 nm □ 0.5" square aperture (1112N)□ 1" square active area (1392N) ☐ Repeatability 0.2% per month non-cumulative, 1% per year

Price: 1112N \$290.00 1392N \$380.00

RADIOMETRIC PENCIL PROBE, 1261N

☐ Handy surface radiance measurements, 10-4 to 10+2 watts/cm²-steradian ☐ 0.02" diameter sension and the sension of the sensi ameter sensing area — plus adjustable focus
Any selectable narrow spectral band between 400 and 1100 nm Precalibrated, 0.2% per month and 1% per year repeatability

Price: (typical) \$430.00

TELERADIOMETER, 3007

Ultra high resolution-measures the difference between two 25 watt lamps one foot apart and a mile away.
Also useful for sensing remote temperature changes Selectable field of view with focal plane iris resolves irrandiances levels to 10-15 watts/cm2

Price: \$2,420.00

Incl. telescope 1584N PM probe (less filters), PM power supply

TELERADIOMETRIC SPOT

☐ Triggered "sample and hold" radiance measurements from 10-5 to 100 watts/cm2-steradian ☐ 1° measurement angle —12° x 15° field of view—optional close-up adaptors [] Thru the lens viewing, with superim-posed spot radiance meter indicator Any selectable narrow band from 400 nm to 1100 nm 2% per year repeatability Price: (typical) \$520.00

4- FMISSION ADAPTER, 3000

☐ Measures total radiant output within a solid angle of 2π or 4π steradians from small sources ☐ 10 to 100 times the sensitivity
of an integrating sphere ☐ Use. able with interchangeable filters Can be ordered calibrated with flat photon response probe 1392N or most other CINTRA

Price: \$250.00 (less probe)

RADIOMETRIC PHOTOMULTIPLIER PROBE, 1684 N*

Ultra sensitive radiant measurements (10-16 to 10-6 watts/cm²) Built-in iris—filter holder —internal magnetic shield
Absolute readout from UV to near IR with fast AC output [1% linearity for two overlap-ping ranges of four decades each Repeatability 2% per hour, 5% per month Price: \$900.00 (less filters)

* Requires Model 100 PM power supply (Price \$595)

RADIOMETRIC PHOTOMULTIPLIER PROBE, 1584N**

High sensitivity-low hysteresis and fatigue measures

10-14 to 10-4 watts /cm²
Photon tight 2" x 2" filter holder
Absolute readout with fast AC output

1% linearity for two overlapping ranges of four decades each

Repeatability
2% per hour, 5% per month Price: \$425.00 (less filters)

Requires Model 100 PM

MICRORADIOMETER, 3006

☐ Resolves 10-14 watts emafrom sources as small as 0.0001" Alternately measure, view or photograph any portion of the viewing field Includes microradiometer adapter, camera, microscope. 1584N PM Probe (less filters) Model 100 PM power supply. Price: \$1500.00

(Alternative silicon detector probes available at lower cost)

CONTACT MICRORADIOMETER, 3005

☐ Fast accurate "see and scan" surface measurements down to 10-14 watts (10-16 optional) from 0.005" (or 0.010") diameter areas

Built-in superimposed rotatable linear reticle scale reads out in mils

Measures emitted or reflected radiance
Includes microradiometer adapter, 1584N PM Probe, (less filters) Model 100 power supply Price: \$1,270.00

(Alternative silicon detector probes available at lower cost)

SINGLE PHOTON COUNTER MODULE. 3020*

Enables calibrated ultra low level measurements essentially independent of small photomultiplier supply voltage changes Counts individual events and reads out incident photon rate to below 100 photons/sec-cm² (10-18 watts/cm²)

Can be remotely gated for examination of multiple photon events or strobed optical signals
Three autoranging decades on each of three photon rate range settings, plus overlapping DC pho-tomultiplier operation

Price: \$730.00

Requires Model 1684N probe and Model 100 power supply

MULTIPLE PROBE MODULE, 3010

Permits simultaneous operation of a maximum of four, not necessarily identical, probes to a single Model 101 Radiometer

Probe readout is sequenced either automatically, manually or by external triggering Direct readout in absolute units on all probes Gain corrections for filters, lenses, etc., can be made on one channel

DIFFERENTIAL PROBE MODULE, 3011

Permits individual, differenrial and summation measurements of two, not necessarily identical, CINTRA probes Compare lamps, phosphors, solid state sources, etc., for output changes as small as 1 part

Price: \$320.00

FILTER SPECTRORADIOMETER

Large active area (1" square) wide angle spectroradiometer. 10-10 to 10 watts □ Wavelength selection from 400 nm to 1100 nm with interchangeable 2" x 2" filters
Correction dial for filter transmission

Optional N.B.S. traceable calibration

2% spatial uniformity-1% per year repeatability Price: \$385.00

PULSE INTEGRATION MODULE, 3009

☐ Enables "sample and hold" measurements of single pulses in total watt-second (joules) [second pulses with most CIN-TRA probes for pulses below 100 watts* peak power

Can be triggered externally or can trigger an external source

CRYOGENIC IR PROBE, 1772N

☐ Simple plug-in probe measures below 10⁻¹⁰ watts and beyond 10 microns ☐ Calibrated infrared detectors operate over one week at 77°K with one liquid nitrogen filling

Stainless steel dewar system with changeable windows utilizes built-in ion pump

Price: \$4,350 (complete system)

CINTRA SCIENTIST 909 COMPUTING CALCULATOR

Complete automatic on-line or manual mathematic manipulation of optical variables. Price: (909 only) \$3,780.00

Other probes with special responses A broad variety of accessories to suit your requirements Standard lamps and calibration services Optical benches Thermal energy sources Photometric and thermal radiometer systems

with clip-on attenuator Prices outside U.S. and Canada slightly higher

ational Company 440 Logue Avenue Mt. View, Calif. 94040 (415) 969-9230

tons to 70 MeV and a second cyclotron will complete acceleration to 500 MeV with an expected current of 100 microamperes. The facility can be used for experiments with the low-energy beams of the injector cyclotron or for intermediate-energy physics with both accelerator stages.

Because both stages are isochronous (sector-focusing) cyclotrons they yield a continuous beam with 100% macroscopic duty cycle. The main cyclotron has eight C-shaped spiral sector magnets with the field varying from 14 kG to 20 kG between the injection radius of 2.1 meters and the extraction radius of 4.5 m. In four of the gaps between magnets, rf cavities give a total energy gain of 2 MeV per orbit, ensuring a radial separation of 8 mm per orbit and hence high extraction efficiency.

The Swiss accelerator is only one of several meson factories nearing completion (Physics today, December 1966, page 27). At Los Alamos the Meson Physics Facility, with an expected beam of 800 MeV and 1 milliampere, may be in operation by 1972 (Physics today, May 1969, page 65). With the previously unavailable high intensities of pion and muon beams provided by these new machines, one can study problems ranging all the way from nuclear physics to radiation biology.

—BGL

Phase Matching Achieved in Circularly Polarized Waves

C. Kumar N. Patel and Nguven Van Tran report that they have obtained phase matching between circularly polarized waves in nonlinear interactions (Appl. Phys. Lett. 15, 189, 1969). Phase-matched interactions in linearly polarized waves have made use of the birefringence in crystals. However, this technique cannot be extended to circular polarizations because the rotary dispersion in crystals exceeds the rotary birefringence. Patel and Van Tran applied a magnetic field to an electron plasma in a semiconductor to increase circular birefringence. The field was aligned along the common directions of propagation of two circularly polarized input waves and the output wave generated by phasematched difference frequency mixing. The magnetic field allows tunability of phase matching for different input frequencies.

You'll call it the neatest little analyzer package you've ever seen!

SpectraZoom is a compact (less than a cubic foot), light weight (less than 30 pounds) new analyzer that combines the economy of a 200-channel instrument with the versatility and superior resolution capabilities of an 800-channel analyzer.

SpectraZoom takes its name from a unique combination of two 100-channel floating point memories with an 800-channel ADC. Either or both memory groups can be positioned in 10-channel steps anywhere over the 800-channel range. This capability, together with conversion gain settings of 100, 200, 400 or 800 channels, allows you to "zoom in" on areas of particular interest.

SpectraZoom's versatility is further enhanced through use of a standard 9-inch TV monitor for display. Additional monitors may be chained together for classroom, remote or auxiliary display. Controls allow highlighting the channels of interest, and both vertical scale and variable channels marks are generated by the analyzer, mixed with the spectrum, and displayed "live" on the TV monitor.

Send the coupon for an informative new brochure detailing features of new SpectraZoom Analyzers.

Packard

PACKARD INSTRUMENT I 2200 WARRENVILLE ROAD • DO SUBSIDIARIES OF AM	NTERNATIONAL S.A. LTD. WNERS GROVE, ILLINOIS 60515	
Please send information on new SpectraZoom Analyzers		
Name & Title		
Institution and Dept.		
Address		
City	State	Zip