serves. Its acceptance by the Society's Council was predicated on the facts that not only are the initial premium rates lower than those provided under the IEEE plan, but also that other group plans issued by the APS insurer to similar nonprofit organizations' members have achieved dividends as high as 40%, as opposed to the IEEE-plan dividends of 20%. The Society would hope that, after its plan has been established, a dividend record at a much higher rate than 20% will be achieved. As to how these dividends would be applied, as was discussed by the Trustees in the Bulletin article, it could have the effect of providing not only a lesser net premium rate but also increased value to the now \$10 000 units.

MELVIN R. DOWNES Trustee, APS Group Insurance Trust

Amorphous versus crystalline

I should like to clarify one of the remarks in my (1969) review of the Amorphous Semiconductor Conference published in the October 1969 issue of PHYSICS TODAY. At the beginning of the review, I referred to the need for structural work on all experimental samples, citing the facts that early optical measurements seemed to suggest that important details of the crystalline band structure remained applicable to the amorphous state and that recent density measurements had found densities for "amorphous" material very close to that of the bulk crystal. I suggested that this "invited the interpretation that the 'amorphous germanium' was composed of small crystallites small enough to escape detection as ordered arrays in x-ray examination, but large enough to yield the optical properties of the crystalline material." I then added "Such a possibility clouds the interpretation made from William Spicer's photoemission studies that the energy-band structures of amorphous and crystalline germanium are similar but that the disorder breaks down the k selection rules."

I wish to make clear that I have no reason to doubt the accuracy of Donovan and Spicer's photoemission measurements. Furthermore, these authors emphasize that, in their view, their results denote importantly different optical properties and band structures for crystalline and amor-

Telescope Reputations are Made at Night...

Write for your free brochure on 8, 12, 16, and 24-inch Cassegrain telescopes.

The Ealing Corporation,
Optics Division;
2225T Massachusetts Avenue;
Cambridge, Massachusetts 02140.
Tel: (617) 491-5870.
In California, Tel: (213) 357-3330.

England: 15T Greycaine Road, Bushy Mill Lane; Watford, Herts (WAtford 42261). Canada: 719T Lajoie Avenue, Dorval 760, Province of Quebec. (514) 631-5171.

SUPERCON INTRODUCES A NEW HIGH WIRE ACT.

Research balloons like this have been performing chemical and energy analysis of cosmic rays at altitudes over 20 miles. Sounds like Buck Rogers stuff, but it's been made possible by new lightweight superconducting magnets that haven't the size and weight limitations of conventional magnets and power supplies.

SUPERCON superconducting material is a key factor in the light weight and smaller size of these magnets. This one for example, was built by Super Magnetics of Concord, California with SUPERCON 30 mil diameter type G wire. This magnet achieved a field of 10 kG in a one foot diameter bore (55kG at the winding) with a current of 150 amperes. That's essentially short sample

performance, too. For obvious reasons, similar magnets are planned for the first space stations. SUPERCON also makes dependable, economic superconductive material for other, down-to-earth uses. It's available in a wide variety of single and

multifilament compositions for all current and field applications up to 80 kG. For more information, contact: SUPERCON Division, Norton Company, 9 Erie Drive, Natick, Massachusetts 01760, or call Dr. James Wong at 617-655-0500.

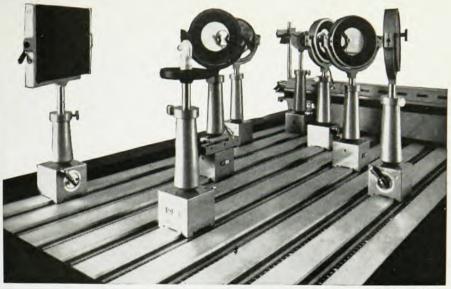
phous material. The interpretation that recognizes the gross similarities as well as the detailed differences is therefore closer to my point of view than to theirs.

At the time of writing my review I did not know the density of Donovan and Spicer's films but I was aware that films from the same source had shown an absorption edge remarkably similar to the single crystal, and it was in this climate of information that the above-noted comment was written. Spicer tells me that all of the films measured were of the order of 10-15% less dense than crystalline germanium. Their optical data are to be considered appropriate for material that cannot be classified as microcrystalline by routine structural analysis, but must (along with everybody else's) be labelled "amorphous" until some quantitatively measure of amorphicity becomes available.

> WILLIAM PAUL Harvard University

Oversight repaired

In the article "Nuclear Safeguards-2. The U.S. Program" (November, page 33) I carelessly neglected to note that the composite sodium-germanium detector spectra were traced from real curves, laboriously recorded by Chellis Chasman of the Physics Department, Hobart Kraner and Sanford Wagner of the Instrumentation Division of Brookhaven National Laboratory.


> WILLIAM A. HIGINBOTHAM Brookhaven National Laboratory

Corrections

Остовек 1968, page 77-The bubblechamber picture shown was not made with the Nimrod accelerator, as the caption claims, but was made much earlier with the Saclay 81-cm bubble chamber at CERN.

DECEMBER 1969, page 67-The new journal Optics Communications appears monthly rather than quarterly. DECEMBER 1969, page 95-Kenneth Fox is an associate professor, not an assistant professor.

JANUARY 1970, page 30-\$400 million, rather than \$300 million, was invested in physics research and development in 1969 compared with the total of \$16 000 million, rather than \$27 000 million, in scientific research and development.

U. S. Patent #3,214,119;

Our holography system...

a little goes a long way.

have an on-off leverlock, which permits them to be placed at any angle on one rail or across two rails. These magnetic bases can even be mounted on the frame of the

bench. Further, these bases have two right-angle channels on the bottom for fast, precise 90-degree positioning on the rails.

Finally, we want you to have all the necessary information for taking full advantage of our new, versatile holography system. So we prepared the Gaertner-Jeong Holography System Laboratory Manual.

Here's its Table of Contents: (A) Apparatus Description and Operating Instructions; (B) Experiments in Wavefront Reconstruction. (Which include holograms

of point object at infinity, of point objects at finite distance. and of twoand three-dimensional scenes; multiplexed, multichanneled, white-light, and differential holograms); (C)

Darkroom Techniques for Holography; and (D) Bibliography.

Price in U.S.: \$5.00. Elsewhere: \$8.00.

That's part of the story of our new holography system. For the rest, we invite you to write to us for detailed literature.

Gaertner Scientific Corporation, 1234B Wrightwood Ave., Chicago, III. 60614.

required. Because in just about every other way, this new holography system is designed to let you do big things.

By "little," we mean

only in size and space

This Gaertner-built system consists of: (1) our recently-introduced rectangular optical/instrument bench; (2) all of the necessary apparatus for a wide variety of holographic experiments; and (3) the Gaertner-Jeong Holography

System Laboratory Manual.

As we've said this system is a spacesaver. That's because the basis of the system is our rectangular optical/instrument bench. It has nine flat, parallel rails, which together provide you with a bench that has an equivalent length of 30 feet. All within a compact area of 10 square feet. In addition, an air-suspension system permits isolation of the bench from its frame and, therefore, from unwanted vibration.

The holographic apparatus for this system includes the following components: laser; spatial filter: beam deflector; two firstsurfaced mirrors; two beam spreaders; beam splitter; object table; and film holder. (You can also use a laser of your own choice.)

Each of these Gaertner-designed components can be quickly and easily mounted on the instrument bench for holographic set-ups.

To reduce set-up time even further, each component has simple adjustments for mutual alignment in both the horizontal and vertical planes.

But what really makes for simplicity of set-up is something really different: our magnetic instrument bases. They