to the reader who only knows Willy Ley as a renowned expert in rocketry and space science, but he will soon realize how boundlessly cultivated the author is and will not be too much surprised that he was educated as a zoologist.

ie sti

int o

led

Kess

le In

liatin

Open

the si

es to

Whole

10 201

neets.

anchor

aves L

nd in

with =

SUCCES

elm a

nyone I

ive, EL ds very a nt for th

ditors, =

SCHOOL

ind the

who U

andte

Two features characterize the author's writing. The first one is the uncommon depth of information on various topics and the orderly exposition. The second feature is charm: A vivid presentation, a good deal of humor and a beautiful style add up to a delightful reading. Lev's book proves that scientists can write with elegance.

Of particular interest to physicists, and a wealth of information to teachers, are the essays that are a rebuttal of the fancy theories about the inclusion of such numbers as π in the Egyptian pyramids; a historical review of discoveries on gas theory; a precise analysis of the physical possibilities regarding the noise produced by meteors; stellar evolution, and the old riddles solved and the new ones posed by the space age.

The reviewer has taught physics and mathematics for several years.

Collective model advocate

COLLECTIVE MODELS OF THE NUCLEUS, By J. P. Davidson, 238 Academic Press, New York, 1968. \$12.00

by HENRY S. VALK

To those working in the field of theoretical nuclear physics, the name of John P. Davidson, physics professor at the University of Kansas, needs little introduction. He and his students have made many original contributions to our understanding of the nucleus, particularly its collective as-TATLAN Pects.

ESSAYS I With this background it is not surprising that Davidson's new monograph provides a lucid summary of the phenomenological approach to the collective nuclear models. The main collective nuclear models. The main text covers the fundamental physics of the liquid-drop model and describes specific classes of nuclei and their transitions. The work concludes with a chapter on mu-mesic atoms and their use as a tool for exploring the collective properties of heavy nuclei. The

author wisely chooses to place the relevant algebra of angular momentum and other calculation detail in a set of appendixes. This keeps the book relatively self-contained and permits the reader to concentrate on the physics unhindered by lengthy mathematical digressions.

This book, the outgrowth of a review article prepared several years ago (Reviews of Modern Physics, 37, 105, 1965), fills a long standing need. The shell model and its close relations have found many expositors, but heretofore the phenomenological collective model has not had any representation in the nuclear physicists' library. It has now found an advocate.

The reviewer is a theoretical nuclear physicist and chairman of the physics department at the University of Nebraska.

A compendium of results

ELECTRON IMPACT EXCITATION OF ATOMS (NSRDS-NBS 25). By B. L. Moiseiwitsch and S. J. Smith. 116 pp. National Bureau of Standards, Washington, DC, 1968. \$2.00

by BRUCE W. SHORE

This monograph provides a timely review of the computational and observational methods currently employed to determine cross sections for electron-impact excitation of atoms and ions. It also provides a valuable compendium of theoretical and experimental results, in both graphical display and in tabular form. Equally valuable is the authors' critical assessment of existing experimental results.

The authors, B. L. Moiseiwitsch of the applied mathematics department, the Queen's University of Belfast, and S. L. Smith of the Joint Institute for Laboratory Astrophysics at Boulder, Colorado, are respected for their work in atomic physics; Moiseiwitsch is perhaps best known for his application of variational methods (for example, Variational Principles, Interscience, 1966). This monograph was simultaneously published in Reviews of Modern Physics, 40, 2, (1968).

The theoretical half summarizes the numerous approximation methods now used in computations. These range from the simple Born approximation through the elaborate close-coupling equations and include classical approaches, simplified methods for including exchange and approximations that guarantee unitarity. The major portion of the discussion concerns electron-hydrogen collisions, showing the relative simplicity of the electron-hydrogen system, with appreciable discussion of electron-helium collisions, and briefer mention of excitations of more complex atoms and positive ions.

The experimental half follows a similar pattern. The authors discuss methods for measuring excitation cross sections, results for hydrogen and helium and selected results for heavier atoms, particularly alkalis. They critically examine polarization and angular distribution effects, and take experimenters to task for paying insufficient attention to these and other sources of experimental errors. They conclude that significant improvements are now possible in the quality of published experimental results.

The coverage is thorough, the exposition lucid, and, as befits a review, it is well documented with references.

An associate professor of physics at Kansas State University, the reviewer is coauthor, with D. H. Menzel, of Principles of Atomic Spectra (Wiley, 1968).

From optical pumping to arcs

METHODS IN EXPERIMENTAL PHYSICS, VOL. 7B: ATOMIC AND ELECTRON PHYSICS. Benjamin Bederson and Wade Fite, eds. Academic Press, New 374 pp. York, 1968. \$17.00

by GILBERT O. BRINK

This is the second volume of a twopart series on the techniques of experimental atomic and electron physics. It is intended as a summary of atomic and electronic interactions in bulk matter, primarily in the plasma state. As with any such book it only partially meets this goal because of rapid developments in the field. However, it still provides a useful starting point for a beginner, as well as a means for experienced workers to bring themselves up to date in bordering areas of phys-

The book is divided into six independent and self-contained chapters, each devoted to a separate topic. Bibliographies, though not complete, provide suitable material for further literature work. It is possible to read

New titles in particle, chemical, and solid state physics from Wiley-Interscience.

THEORY OF WEAK INTERACTIONS IN PARTICLE PHYSICS

By ROBERT E. MARSHAK, University of Rochester; RIAZUDDIN, University of Islamabad, Pakistan; and CIARAN P. RYAN, University College, Dublin.

Volume 24 in the Wiley-Interscience Monographs in Physics and Astronomy Series, edited by Robert E. Marshak.

This comprehensive volume surveys both the present status and future promise of weak interaction theory. Because it summarizes a decade of intense activity in the field, it will be of special interest to advanced students and research workers in particle physics, as well as to nuclear physicists, and astrophysicists. Highlights of Theory of Weak Interactions in Particle Physics include-

- 1. the first thorough account of the very successful V,A theory of weak interactions.
- 2. the consistent application of the current algebra approach to all aspects of weak interactions,
- attention is focused on particle properties throughout,
- 4. two special, introductory chapters have been included to make this book especially useful to the experimentalist: the first includes a historical summary and the second summarizes the mathematical apparatus required to follow the theoretical expo-

A detailed table of contents, extensive lists of references at the end of each chapter, and numerous, previously unpublished figures, increase the utility of this work.

. extraordinarily good. The breadth and depth of its coverage and the lucidity and elegance of its arguments is bound to make it a standard work in the field for a long time to come."-Henry Primakoff, University of Pennsylvania.

Outline of Contents:

Physical Preliminaries. Mathematical Preliminaries. Leptonic Weak Processes. Hypercharge-Conserving Semileptonic Processes. Hyperchange-Changing Semileptonic Processes. Hadronic Weak Processes. Intermediate Boson Hypothesis. Selected General References. 1969 761 pages \$29.95

A NEW SERIES-ADVANCES IN PARTICLE PHYSICS

Edited by RODNEY L. COOL, Brookhaven National Laboratories; and ROBERT E. MARSHAK, University of Rochester.

This new series features expository and comprehensive reviews of topics of current interest in particle physics. It is designed for scientists who wish to keep informed of relevent and important work in the field. Bibliographies are up-to-date and extensive.

Volume I-Contents and Contributors:

High Energy Muon Scattering (L. M. Lederman and M. J. Tannenbaum). A First- and Second-Order Matrix Theory for the Design of Beam Transport Systems and Charged Particle Spectrometers (K. L. Brown). Weak Interactions and Symmetries (B. d'Espagnat). Higher Symmetries of Hadrons (B. Sakita). Leptonic Decays of Elementary Particles (W. Willis and J. Thompson). Author Index. Subject Index. 1968 497 pages \$18.95

CORRELATION EFFECTS IN ATOMS AND MOLECULES

Edited by R. LEFEBVRE and C. MOSER, both of the Centre de Mécanique Ondulatoire Appliquée, Paris, France.

Volume 14 in the Advances in Chemical Physics Series, edited by I. Prigogine and S. Rice.

Contains most of the volumes given at the Advanced Summer Institute on Correlation Effects in Atoms and Molecules held at Frascati, Italy, in July, 1967. The Institute was designed to confront atomic and molecular physicists with both the traditional and modern ap-

Contents: Atomic Bethe-Godstone Equations (R. K. Nesbet); On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules (J. Cizek); Effective Operators for Configurations of Equivalent Electrons (B. R. Judd); Applications of Many-body Diagram Techniques, in Atomic Physics (H. P. Kelly); On the Hartree-Fock Method of Multi-figuration Approximation (A. P. Jucys); On the Application of the Extended Method of Calculation to the Atomic Electrons (A. P. Jucys and V. A. Kamisnskas); The Correlation Energy of a Non-uniform Electron Gas (K. A. Brueckner); Electron Correlation in Atoms and Molecules (Oktay Sinanoglu); Some Aspects on the Correlation Problem and Possible Extensions of the Independent-particle Model (Per-Olov Löwdin); Correlation Effects in Diatomic Molecules Obtained from

Configuration Interaction Using Hartree-Fock Orbital Effects on Energy and Monoelectronic Operators (F. Grimaldi); A Linked Diagram Treatment of Configuration Interaction in Openshell Atoms (P. G. H. Sandar); The Field-theoretic Form of the Perturbation Theory for Many-electron Atoms I. Abstract Theory, II. Atomic Systems (V. V. Tolmachev); Author Index; Subject Index; Cumulative 1969 545 pages \$29.95 Index to Volumes I-XIV.

PHYSICS OF SEMICONDUCTOR DEVICES

By S. M. SZE, Bell Telephone Laboratories.

Physics of Semiconductor Devices is the most complete and modern text and reference book on virtually all the important semiconductor devices for first-year graduate students in electrical engineering, material science, and applied physics, and for solid-state-device research scientists.

The book deals with the physics and operational characteristics of semiconductor devices, particularly microwave devices such as IMPATT diodes and Gunn oscillators, optoelectronic devices such as photodetectors and junction lasers, and interface devices such as Schottky diodes and MOS structures. Included are 30 tables of important material and device parameters, 500 technical drawings and about 1000 references. The author has wide experience in the field and is actively involved with the research and development of many 1969 812 pages \$19.95 of the semiconductor devices.

ION-MOLECULE REACTIONS

By E. W. McDANIEL, Georgia Institute of Technology;

V. CERMAK, Czechoslovak Academy of Sciences;

A. DALGARNO, Harvard University

E. FERGUSON, U.S. Department of Commerce; and

FRIEDMAN, Brookhaven National Laboratories

Wiley Series in Atomic and Molecular Collisional Processes, edited by C. F. Barnett, Oak Ridge National Laboratory.

Provides exhaustive coverage of both the experimental and theoretical aspects of ion-molecule reactions in gases. The five scientists bring a broad spectrum of knowledge and experience to bear on this comprehensive and current collection of carefully screened data.

Outline of Contents:

Introduction. Experimental Methods Used in Laboratory Investigations. Theory of Ion-Molecule Collisions. Reaction Rates from Ionospheric and Airglow Data. Ion-Molecule Chemistry. Quantitative January, 1970 Approx. 376 pages \$19.95

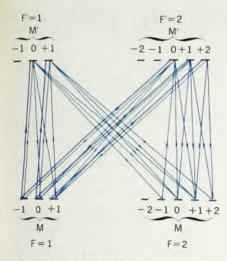
				-	Ł	J	
 _	 -	-	_		-		

SAVE MONEY!

pays all delivery and handling charges. Gentlemen:
Please send me each of the books I have checked below under the following terms: I enclose \$ and understand that Wiley Interscience pays all delivery and handling charges. If I am no satisfied with the book(s) I may return the order within 10 days to a full refund.
Bill me. I will pay handling and postage.

Enclose your check and Wiley-Interscience

dame ro-day privilege applies.		
Marshak: WEAK INTERACTIONS	471 57290-X	\$29.95


-	Warshan, WEAR	INTERACTIONS	4/1 5/29U-X	\$29.95
	C1/11			

- ☐ Cool/Marshak: ADVANCES, Volume I 470 17056-5 \$18.95
- ☐ Lefebvre/Moser: ATOMS 471 52143-4 \$29.95 ☐ Sze: SEMICONDUCTOR DEVICES 471 84290-7 \$19.95
- ☐ McDaniel et al.: ION-MOLECULE REACTIONS

471 58386-3 \$19.95

TO: Wiley-Interscience, Dept. 240

Name		
Company Affiliation	in	
Address		
City	State	Zip
100000000000000000000000000000000000000	es subject to change without s	

TYPICAL OPTICAL transitions are shown in the optical pumping cycle of an atom having a $^2S_{1/2}$ ground state, a $^2P_{1/2}$ resonant excited state and a nuclear spin I=3/2.

the section of interest and obtain a current summary of that field. Graduate students should find it useful in surveying the current problems in atomic and electron physics.

The book begins with a chapter on optical pumping, in which not only the experimental, but also the theoretical foundations are discussed. The next section on electron swarms presents information on electron—atom interactions and also includes afterglow experiments. The discussion on shock tubes is primarily a rather complete description of production techniques of high-temperature shock waves in gases.

Chemical-reaction rate measurements at high temperature are included in the flame-kinetic studies, a section that has a particularly extensive bibliography. In dealing with the interaction of heavy particles with solids, the authors present, among other things, an interesting discussion of the "channeling" effect in crystals, where the incident particle moves between the layers of atoms forming the lattice. The book closes with a chapter on electric arcs, their production and application to the study of atomic processes.

In general this book should be useful to anyone working or thinking of working in atomic-collision physics. It is well written and provides a clear and concise review of current work.

Gilbert O. Brink is an associate professor of physics at the State University of New

York at Buffalo and has been active in experimental research in atomic physics for 12 years.

Storage tubes

ELECTRONIC IMAGE STORAGE. B. Kazan and M. Knoll, ed. 498 pp. Academic, New York, 1968. \$19.50

by LADISLAUS MARTON

B. Kazan and M. Knoll's book is an outgrowth of two of their own earlier publications. In 1952 they published a relatively short book titled Storage Tubes and Their Basic Principles. This was followed four years later by a critical review entitled "Viewing Storage Tubes," published in Advances in Electronics and Electron Physics.

Electron Image Storage, an entirely up-to-date and expanded version of the earlier book, begins with a thorough discussion of basic processes, such as secondary emission, photo emission, photoconductivity, electron bombardment, induced conductivity and luminescence phenomena. This section is followed by the description of writing and reading processes in charge-storage devices, by the discussion of signal-converter devices (which exist in a remarkable variety) and display devices, such as cathoderay tubes, electrostatic film-deformation displays, xerographic displays, birefringent, crystal displays and many others.

The last two important chapters deal with camera-pickup devices and image-converter devices which, although not strictly storage devices, are sufficiently related to be included. A rather useful appendix at the end contains "Storage Tube Definitions" taken from the 1962 Institute of Radio Engineers Standards on Electron Tubes.

Although I have concentrated on the vacuum-device aspects, on which the authors are very well known authorities, the book contains an added short chapter on magnetic-storage devices. It is so condensed that it serves only to whet the reader's appetite for looking at the (fortunately sufficient) extremely the references. With widespread applications of storage and similar devices (television, telemetering, computers, teaching, decision making, and many others), it became quite timely to reissue an improved version of the authors' older book. The new version will, no doubt, be very well received by the scientific and technological community.

The reviewer is with the office of international relations at the National Bureau of Standards.

Carbon and its modifications

CHEMISTRY AND PHYSICS OF CAR-BON: A SERIES OF ADVANCES, VOL. 4. Philip L. Walker, Jr. ed. 399 pp. Marcel Dekker, New York, 1968. \$20.75

by MARTIN E. STRAUMANIS

This volume is the fourth in a series, edited by Philip Walker Jr, professor and head of the materials science department at Pennsylvania State University, and consists of six articles written by 11 authors, all of them experts in carbon research.

The first four chapters are of interest for the physicist. Considering the great importance of carbon and its modifications in nature, in industry and in research, there is no wonder that many crucial experiments and measurements were performed with carbon, graphite and diamond. It follows from the first article, written by W. Ruland, that the allotropy of carbon gave an impulse to one of the first structural studies with x rays. Accordingly the theory of scattering of x rays by carbon and graphite is in the first article, with mathematical descriptions of two-dimensional lattices, of small-angle scattering, order and disorder phenomena, lattice imperfections and preferred orientation.

Rates of carbon vaporization, heats of sublimation, composition of vapor, melting of graphite and similar problems are discussed in the next article by H. B. Palmer and Mordecai Shelef.

In the following chapter, S. B. Austerman discusses the crystallization of graphite from solutions in molten metals (iron, nickel, molybdenum, chromium). Iron can be evaporated from a solution of carbon in iron at 3000°C, and graphite crystals grow from the melt. There is also a possibility of controlling the amount of defects in such crystals. The article by T. Tsuzuku and M. H. Saito shows how internal friction measurements can determine the dislocation movement in