
NATURAL COORDINATES
FOR ELECTRONS IN SOLIDS
The adage that solving a physics problem is a
question of finding the right coordinate system is demonstrated
for electrons in crystals. Coordinates that reflect the regularity
of the crystal greatly simplify the problem.

JOSHUA ZAK

THE DESCRIPTION OF A PROBLEM in
physics can often be significantly
simplified by a suitable choice of co-
ordinates. Usually the choice of the
best coordinates is dictated by the
symmetry of the problem. Thus for
a spherically symmetric potential it is
most convenient to use spherical co-
ordinates. In some cases it is very
easy to choose the right coordinates;
in other cases, the problem is not triv-
ial at all. Here we will discuss the

choice of suitable coordinates for the
motion of electrons in solids.

One of the most fundamental prop-
erties of any solid is its periodic struc-
ture. Formally, this property is ex-
pressed by the invariance of the po-
tential energy, V(x), with respect to
translations by the constant a of a
unit cell

V(.x + a) = V(x) (1)

For many problems in solid-state

physics we are interested in finding
coordinates that are most appropriate
for a potential with the symmetry ex-
pressed by equation 1. The reason
we expect such coordinates to be use-
ful can be seen in the example of
spherical symmetry. In that case, the
potential depends only on the ab-
solute value, r, of the radius vector, r,
and by choosing spherical coordinates
r, 0 and tp we can separate them and
so simplify the solution of the problem

A PERIODIC POTENTIAL. "Natural" coordinates would show the same kind of symmetry as this. —FIG. 1
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significantly. We expect similar sim-
plification for motion in a periodic po-
tential if the coordinates in which the
motion is described reflect best the
symmetry of the potential given in
equation 1. (See figure 1.)

Microscopic motion in solids is us-
ually treated on an atomic scale, and
the description should therefore be
based on quantum mechanics. There
are a number of well known schemes,
called representations, for describing
motion in quantum mechanics. For
example, in the ^-representation the
Hamiltonian of the problem is ex-
pressed as a function of x and deriva-
tives with respect to x (the latter
come from the dependence of the
Hamiltonian on the momentum of the
particle). Similarly, in the p repre-
sentation the Hamiltonian depends on
p and derivatives with respect to p.

The concept of a representation is
of fundamental importance in quan-
tum mechanics. It provides us with
a language for expressing relations
among physical quantities and for
writing down the equations of motion.
P. A. M. Dirac showed1 that an opera-
tor or a set of independent operators
define a quantum-mechanical repre-
sentation if they satisfy two require-
ments: that they all commute with
each other, and that any additional
operator that commutes with all the
operators of the set is necessarily a
function of them. For example, the
coordinate operator defines a represen-
tation in quantum mechanics. For one
degree of freedom, it is the coordinate
x; for three degrees of freedom, x, y
and z together define a representation.
In the language of quantum mechan-

ics, the problem that we are going
to discuss here is the definition of a
set of coordinates (or operators that
form a quantum-mechanical represen-
tation) that reflect in the closest way
the symmetry of the periodic potential
in equation 1.

Quasimomentum

For an electron moving in a periodic
potential, V (x), Schrodinger's equa-
tion is

2m
V{x) (2)
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The translational invariance of equa-
tion 2 can be expressed by saying that
the operator

T(«) = exp(ipa) (3)

commutes with the Hamiltonian of
equation 2. (We assume h/2w = 1.)
This operator represents a finite trans-
lation in x space2 by the constant a

In solid-state physics the operator
T(a) is of very great importance be-
cause it commutes with the Hamil-
tonian of equation 2 and is therefore
a constant of motion. The eigenvalues
of T(a) define what is called3 the
quasimomentum k, namely, the eigen-
values of T(a) are exp (ika) with k
varying from 0 to 2-rr/a. When k is
given, the momentum of the electron
is known within a multiple of 2-jr/a.
Being a constant of motion, k in a
periodic potential plays the role of the
momentum of a free particle. It is
for this reason that k is so important
in the dynamics of solids.

Quasicoordinate

Because k is a constant of motion,
one should in general expect that the
potential in equation 2 is independent
of k (for example, in the case of a
spherical potential the constants of
the motion are functions of the angular
coordinates 0 and tp, on which the po-
tential does not depend). What is
die coordinate on which V(x) in
equation 2 depends? This question is
very easy to answer. Because V(x)
is periodic, it clearly depends only on
the position of the electron inside a
unit cell of length a, but not on which
of the unit cells it is. Let us denote
the location of the electron inside a
unit cell by q (see figure 2). It is
clear that the potential in equation 2
is a function of q only, that is, V(x)
— V(q), because all the unit cells are

identical. In full analogy with k, we
shall call q the quasicoordinate.
When q is given, the position of the
electron is defined within a multiple
of the constant a. Knowing this im-
portant fact, that the potential de-
pends only on q, we are interested in
finding the operator that defines q.
It has to be similar in structure to the
operator of equation 3 that defines k.
It can be seen that the operator

7'" H) (4)

has the eigenvalues

exp
2

h ? -V a

and therefore defines q, the quasico-
ordinate. q assumes values from 0 to
a. The operator in equation 4 repre-
sents a translation in p-space, because
x = id/dp

IT

P
a

T - U (/>) =

The definition of the quasicoordinate
q is therefore completely analogous
to the definition of the quasimomen-
tum k. (See figure 2.)

kq representation

A very important quantum-mechanical
fact about the operators of equations
2 and 4 is that they commute (we
know eAeB = eBeAe^-A'B^ for operators
A and B such that [A,B] commutes
with both A and B)

This result means that it is possible
to measure the eigenvalues of T(c)
and T(2ir/a) simultaneously, or alter-
natively that k and q of an electron
can be given together. It turns out
that not only can T(fl) and T{2n/a) be
measured together, but one can also
prove that these two operators form
a complete set of commuting opera-
tors; that is, they define a quantum-
mechanical representation.4 We call
this representation the kq-representa-
tion. It solves the problem of finding
the coordinates that reflect the sym-
metry of the periodic potential of
equation 1. When written in the kq-
representation, the potential energy
depends only on q, which is similar to
the dependence of the spherical po-
tential on the absolute value of f
only.

The /^-representation has a num-
ber of interesting features. In quan-



turn mcczionics 11 is impossible to use
the coordinate and the momentum
simultaneously in a description of
motion because of the uncertainty
principle. The coordinate x and the
momentum p can not be measured
simultaneously, and the motion is us-
ually described in either the X- or
the p-representation. The kq-repre-
sentation uses partial information
about the momentum and the co-
ordinate: k gives the momentum p
within an additive constant 1-n/a times
an integer, whereas q measures the
coordinate within an additive constant
a times an integer. Of course, by giv-
ing k and q we have only partial in-
formation about p and x, and because
the operators of equations 3 and 4
commute, the uncertainty principle is
not violated in the /^-representation.
k and q carry the most information one
can get simultaneously about p and x.

Another interesting feature of the
fcq-representation is its connection to
the Bohr-Sommerfeld quantization
rules and the concept of the number of
states in a unit cell in phase space. It
is well known2 that for finding energy
levels one can use the condition

f pdx = h(n + y) (5)

where the integration is on a closed
path in phase space, n is an integer
that counts the number of the quan-
tum state, and y is a factor between
0 and 1. Equation 5 can also be writ-
ten as follows (we neglect y)

fpdx
(6)

The left-hand side of equation 6 can be
interpreted2 as the number of quan-
tum states contained within the area
f pdx of phase space. This is the
well known rule that the number of
quantum states in any area of phase
space is given by this area divided by
h. This rule can be easily obtained by
the concept of the kq representation.
In this representation the area of the
elementary region where k and q vary
(see figure 2) is 2n/a X a = 2TT, or h
if h/2-n- is not assumed to be 1. Every
point in this elementary cell represents
a different quantum state. In classi-
cal phase space p and x cover the
whole plane. The number of times
a definite quantum state appears in an
area <f pdx of the phase space is given
by this area divided by h, because
every quantum state appears once in
the area of the elementary cell h. We
see therefore that the left-hand side of
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NATURAL COORDINATES in the phase plane. On this figure the thick black lines
show the unit displacement and momentum, the colored lines the position of a point kq.
Then x = q + 2a, p = k + 3x 2n/a. —FIG. 2

equation 6 gives the number of times
a given quantum state appears in the
area <f pdx or the weight of the quan-
tum state. It is in this meaning that
equation 6 is used in integration over
phase space in statistical mechanics.5

One usually replaces the classical ele-
mentary area dpdx by dpdx/h.

Angular coordinate

In the above definition the kq repre-
sentation was closely connected to a
periodic structure. In fact, we looked
for coordinates that reflect the sym-
metry of a periodic potential. It is
clear, however, that the kq representa-
tion does not necessarily have to be
connected to a periodic potential.
The constant a in the operator of equa-
tion 3 can be chosen arbitrarily, and
the corresponding operator of equa-
tion 4 will still be defined. In a crys-
tal, a has the meaning of a unit cell
constant, and 2-rr/a is the length of a
unit cell in the reciprocal lattice. In
general, the kq representation can be
defined on any pair of conjugate coor-
dinates that satisfy the same commu-
tation relation as p and x do. For ex-
ample, the z component of the angular

momentum, L, and the angle of rota-
tion, a, in the xy plane form conjugate
coordinates. The operators that de-
fine the kq representation for the angu-
lar-momentum-angle degree of free-
dom will clearly beG

T(2x) = exp (ft2r) (7)

T(l) = exp (i«) (8)

where for obvious Teasons a was chosen
to equal 2TT (the period of a is 2m-).
Because /- assumes only integral val-
ues, the operator in equation 7 is a
unit operator, and exp (i a) (equa-
tion 8) by itself defines a quantum-me-
chanical representation.

In the case of the xp-degree of free-
dom we had the choice of either using
the x-representation, the p-representa-
tion, or the ^-representation. Argu-
ments of convenience or simplicity
would decide which of them to use.
We do not have this choice in the case
of the angular coordinate because the
latter is by nature a quasicoordinate
(defined modulo 2-ir), and therefore
it has to be defined by means of the
operator in equation 8 in order to avoid
inconsistencies.6 For example, if one
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uses the regular commutation relation

(/.,«) = -« (9)

one comes to an inconsistency. Let us
calculate the matrix elements of equa-
tion 9 in the eigenfunctions of lz. We
have

(m - m'){m\a\m') = —idmm' (10)

where m is the eigenvalue of /-. Equa-
tion 10 is clearly contradictory, be-
cause for m' = m the left-hand side is
zero while the right-hand side equals
—i. This inconsistency follows from
the assumption that a itself is a well
defined operator. As was mentioned
before, a by its nature is a quasicoor-
dinate and has to be defined by means
of a periodic function of a. The op-
erator of equation 8 is a periodic func-
tion of a, and by measuring its eigen-
values (or equivalently by measuring
cos a and sin a) one measures a
itself in a consistent way.0

Other representations

The connection between the kq repre-
sentation and other representations can
easily be obtained. First we find the
eigenfunctions of the operators in
equations 3 and 4. They are4

ht (*) = \— 2 exP (^a) x

S(.v - q - tut) (11)

where 8 is the Dirac delta function.
It can be easily checked that

T(a) ikq M = exp (ika) \pkq (.v)

Or)= exp (iq ^

This means that the \j/kq (x) in equa-
tion 11 are common eigenfunctions of
T'(fl) andT(2rr/a). Being eigenfunc-
tions of a complete set of commuting
operators T(a) and T(2ir/a), the func-
tions \f/kq (x) also form a complete
system of functions. Any functions
ift(x) can be expanded in terms of
them. Thus

*(*) = fdkdq C(kq)+kt(x) (12)

The function C(kq) is the wave func-
tion in the kq representation if \p (x) is
the wave function in the x-representa-
tion. Using equation 12 one can find
the basic operators x and p in the kq-
representation4

= l^Z + q

,d

(13)

(14)

This completes the construction ot
the kq representation: We have the
operators of equations 3 and 4 that
define it, their common eigenfunctions
(equation 1.1) and equations 13 and
14 for the basic operators x and p.
Having this information, we can write
any problem in the kq representation.

Dynamics in solids

As an example of the usefulness of the
kq representation in the dynamics of
electrons in solids, let us discuss Schro-
dinger's equation for an electron in a
periodic potential and external electric
E and magnetic H fields. In the
r representation this equation is

p + H X r
2c

1m
V(x)

X = flKr) (15)

With equations 13 and 14 in three di-
mensions (the generalization for three
dimensions is straightforward4), equa-
tion 15 in the kq representation will
be (we write this equation for the
function t/(kq) = exp(— i k'q) C
(kq); the U(kq) corresponds to the
periodic part of the Bloch function3)

-i ~ + k + i- H X i J- }
dq 2c dk/

2m

F(q)
dk

£/(kq) =

(16)

Equation 16 shows a number of inter-
esting features. As we mentioned be-
fore, in the kq representation one
should expect to have the variables
separated to some extent. We can see
this feature in equation 16. When
there are no external fields the Hamil-
tonian contains the pure Bloch part
(the motion in a periodic potential)
- l / 2 m aVaq2 + V (q), the free-
electron part k2/2m, and an interac-
tion term between these two motions.
In the external fields, the Hamiltonian
separates in a similar way: There
is the Bloch term, the term for the
motion of a free electron (an electron
without the periodic potential) in ex-
ternal fields and an interaction term.
This feature of the separation of vari-
ables corresponds to the general be-
havior of electrons in crystals and
simplifies significantly the description
of the problem.4'7

Another interesting feature of equa-

tion F6~ls the way trie magnetic field
appears in it. One can see that a very
simple rule works: In order to intro-
duce the magnetic field in the equa-
tion, k has to be replaced by k +
e/2c H X i d/dk. This rule demon-
strates that k in a crystal plays to some
extent the same role as p for a free
electron. It should also be pointed out
that equation 16 gives a very conve-
nient starting equation for the deriva-
tion of effective Hamiltonians in a
magnetic field.4

As a final example of the usefulness
of equation 16, let us consider the ac-
celeration theorem for an electron in a
periodic potential and an external elec-
tric field. This theorem is very sim-
ple3

k = -eE (17)

The usual derivation of it requires,
however, rather complicated algebra.
In the k representation, the accelera-
tion theorem (equation 17) follows
straightforwardly from Schrodinger's
equation (equation 16) with H = 0.
One need only use the simple quan-
tum-mechanical rule that the time rate
of change of k is given by the commu-
tator of the Hamiltonian and k

k = i[H,-k] = -eE

The simplicity of the last derivation
and of the examples mentioned before
show the usefulness of the kq repre-
sentation in describing the motion of
electrons in crystals. As we expected,
the kq representation simplifies the
description considerably. Because k
and q best reflect the symmetry of the
periodic potential, they should be
called the natural coordinates for dy-
namics in solids.
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