continued from page 15

to use the microcopy. However, libraries may be interested to know that any item announced by NIPSA is available at nominal cost, with little delay, from system headquarters. It may be that for certain faculty members, or in some libraries the library staff, would need to make an enlarged copy of the microform. This too is not unusual, and would in the long run probably provide the requested copy to the reader faster than a prolonged search of holdings, an interlibrary loan or photocopy request of a distant library that may have a copy of the requested article.

Our plans are to establish an information center that will, in several ways, be a focal point of the system and its services. This center is described in our recent report, "A Program for a National Information System for Physics and Astronomy 1971-1975" (ID 70-P), as are our plans for implementation of the system. By supplying our SPIN tapes to numerous university and regional centers, they will in turn provide SDI, retrospective search, and other services to their subscribers. It is doubtful that NISPA would itself establish regional centers, but it would, as other information systems are currently doing, operate through existing centers.

Creek's point about publicizing the system so that we might receive feedback from the community is well made. We have from the beginning worked closely with several advisory groups whose members are leaders in the fields of physics, astronomy and information science. A corps of respondents, representing leading scientific societies as well as a broad spectrum of research organizations, is also consulted frequently. We distribute our reports and a quarterly newsletter to several hundred in the field to maintain an active liaison with the community. Much of this activity is detailed in our report ID 70-P, available upon request.

Arthur Herschman Director Information Division American Institute of Physics New York, N.Y.

Unemployment solution

An obvious solution for the critical unemployment problem among physicists has received little or no discussion in PHYSICS TODAY forums. That would be for the labs, instead of cutting back their staffs by 5–10%, to give all of us an extra day or two a month off (sans récomponse, of course). I believe that an AIP-conducted poll of the membership of the societies on individual pref-

erences with regard to the question of lay-offs and hiring freezes versus reduced work month could serve a useful purpose as an indicator of majority opinion. If you should print this letter, please withhold my name: I am fortunate to still have a job.

Name withheld

A physicist in biology

Compliments are due Freeman Dyson for his poignant historical perspectives and provocative ideas for the future of physics (September, page 23). It is personally encouraging to find a distinguished particle theorist with an appreciation and apparent excitement for some of the problems in biology and astronomy. As a physicist who for the last few years has been doing research on protein structure (and thoroughly enjoying it!) I feel that I no longer have to apologize to my physics friends (or to myself) for having strayed into molecular biology and neglected "pure" physics. I can now more openly, and in good company, reveal my excitement as a physicist for the intriguing organization and elusive behavior of living

It is also difficult to resist noting, lest any prospective biophysicists be led astray by the article, that proteins are chains of *amino acids*, not nucleotides; this I am sure was a slip of the pen.

Joseph A. Spadaro Syracuse, N. Y.

Corrections

September 1970, page 24, column 2, line 31. It is not true that molecular biology had no name in 1938. The name appears in the 1938 Annual Report of the Rockefeller Foundation, in a piece by Warren Weaver describing the pioneering program of the Foundation in this field. The article of E. L. Hess quoted in the text mistakenly attributes the name to Astbury and states that it first appeared in the literature in 1945–6.

Page 25, column 1, line 53. The MANIAC was not the Princeton computer but was a similar machine built at the same time by Metropolis and his colleagues at Los Alamos. The official name of the Princeton machine was "The Institute for Advanced Study Computer."

Page 25, column 3, line 2. "from the tens of GeV that we had in the 1960's to the hundreds of GeV that we shall have in the 1970's."

Page 26, column 3, line 9. "A protein is a long string of units, each unit being one of twenty amino-acids. A nucleic acid is a string of units, each being one of four nucleotides." □

Complete Nuclear Physics Teaching Laboratory

At last! An accelerator-based teaching system for less than \$50,000. A lot less if you already have some of the electronics.

By system, we mean first, the equipment: a 400 KeV Van de Graaff accelerator, vacuum equipment, magnet, scattering chamber, detectors, radioactive sources, support electronics, pulse height analyzer, and radiation monitor.

Second, our teaching manual: 30 graded experiments in nuclear physics, explained step by step, enough to fill a 3-semester laboratory course. By then the student will have performed the fundamental experiments of nuclear physics and encountered a great deal of quantum mechanics, atomic physics, and solid state physics.

Research? Yes. In nuclear physics, solid state physics, atomic physics, and activation analysis. The magnet provides for additional research stations where your staff and graduate students can do original work.

It's everything a teaching /research system should be: simple to operate, virtually maintenance-free, easily modified for different experiments, low initial cost, expandable with optional equipment.

Our booklet, "The Van de Graaff Nuclear Physics Teaching Laboratory," shows just how this equipment and course book combine theory and practice in the modern physics curriculum. We'll be glad to send it to you.

Name	
Position	
Organization	
Address	