


In this issue our feature articles focus on the subject of environmental problems. On page 26 Marvin Goldberger explains generally how physicists can contribute in this area. Following him on page 32 Hans Panofsky points out how heavily modern meteorology draws on various branches of physics. On page 38 Ali Cambel reviews the projected increases in demand for energy and the ways that these increases might be achieved with minimum threat to the environment. The three authors originally presented their papers at the recent Annual Meeting of Society Officers and Corporate Associates of the American Institute of Physics. Besides "Physics and Environment," speakers at the meeting also presented papers concerned with "Physics and Life Sciences" and "Physics and Energy Sources." The prize winners of the photographic competition held by PHYSICS TODAY for each of these three subject areas were first announced at this meeting. Each winner received an award of \$200. Following are reproductions of the prize-winning photographs.

Environment

Walter A. Feibelman is a physicist at NASA's Goddard Spaceflight Center, Greenbelt, Md. He was formerly a member of the physics faculty of the University of Pittsburgh, and it was at Pittsburgh a few years ago that he took this photograph through a small telescope. The apparent distortion of the sun's disc is caused by contrails from the plane.

A m Syst

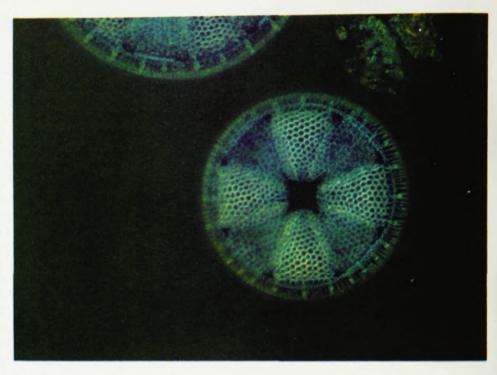
wire

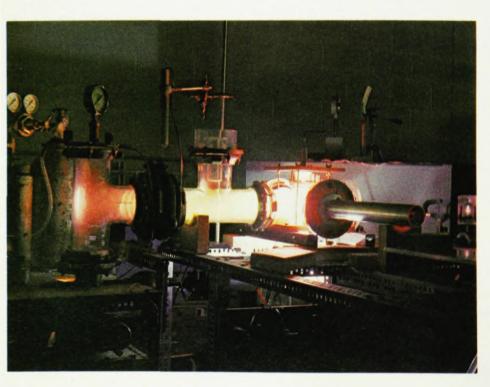
gran

con

para

pro


ope


ly p

With

Life Sciences

Richard B. Hoover, a physicist at the NASA Marshall Spaceflight Center in Huntsville, Ala., took up photomicrography of diatoms as a hobby two years ago and is now looking into diatometry as a monitor of water pollution. He points out that biologists need some knowledge of physics to understand that the color of the diatom in this photograph, Actinoptychus heliopelta, is the "Tyndall blue" arising from Rayleigh scattering of white light at small pores, themselves invisible in the optical microscope.

Energy Sources

Thomas A. Leonard is a graduate student at the University of Michigan, Ann Arbor (Department of Nuclear Engineering) where he uses photographs like this one for plasma diagnostics. A thin lithium wire exploded by a peak current of about $100\,000$ amps makes a rather dense but cool lithium plasma. Light from a Q-switched ruby laser focused on the plasma is scattered and analyzed to give a measure of the plasma density ($n_{\rm e}=10^{18}$ – 10^{10} cm⁻³) and temperature.

FABRISTEK

announces
a new way to link your NMR spectrometer
to exceptional data

A major design innovation in the 1080 System is its use of a single main frame to perform both stored program and wired program computations. Wired programming and conventional instrument controls regulate many data acquisition parameters where high speed, on-line processing is required. Stored program operations are used where complex arithmetic computations are required. If you're so inclined, the 1080 is completely programmable (like any GP computer) with a powerful repertoire of instructions and its own program assembly language.

Additional features include 20-bit word length; input signal filtering; field-expandable memory capacities from 8,192 to 45,056 words (even larger in the future); and versatility through the use of plug-in digitizers and sweep modules to meet future measurement requirements.

The 1080 System has all the required hardware and software to:

- acquire data through analog-to-digital conversion:
- improve signal-to-noise ratio by on-line signal (ensemble) averaging;
- provide off-line baseline correction and/or exponential filtering;
- transform free induction decay data to frequency spectra using fast Fourier algorithm;
- manipulate real (absorption) and imaginary (dispersion) portions of the transformed spectra to yield phase- and amplitude-corrected absorption spectra;
- integrate or perform background subtraction on the absorption spectra;
- provide oscilloscope display of input data or processed memory contents;
- read out data to an X-Y plotter, ASR-33 Teletype, or a computer-compatible magnetic tape unit,

Complete 1080 Systems capable of an 8,192-word Fourier transform start at just over \$30,000. For full details write or call collect to discuss your specific NMR data problems.

FABRISTEK INSTRUMENTS, INC

