beasts and fishes of strange shape, landscapes of every colouring, extraordinary scenes of lunar vegetation, and groupes of the reasonable inhabitants of the Moon with wings at their backs, all pass in review before his and his companions' astonished gaze. The whole description is so well clenched with minute details of workmanship and names of individuals boldly referred to, that the New Yorkists were not to be blamed for actually believing it as they did for forty-eight hours. It is only a great pity that it is not true, but if grandsons stride on as grandfathers have done, as wonderful things may yet be accomplished." Good reading after 21 July, 1969.

There is also a helpful general survey of Herschel's ways in life and science, -written in a most lively style and presenting us with some invaluable inside stories of a vital period of astronomical history. In one place the authors even try to examine Sir John's wallet, calculating the energy balance of incoming and outgoing financial radiation (in the latter assisted by Lady Herschel's private account book, which was also found in the Texas papers). Some discrepancy appears as to where the sums for a life "like a landed gentleman" actually came from, so that the authors summarize their auditing with the insight that "it all remains a little mysterious, as other people's finances so often are."

Ultrasonics: Theory And Application

By G. L. Gooberman 210 pp. Hart, New York, 1969. \$12.00

Ultrasonic techniques are being used in so many fields of science and engineering that a book much more voluminous that the present work would be needed to describe all of the most important applications. If theory is to be included, it becomes obvious that 210 pages simply do not suffice. G. L. Gooberman decided not to do the impossible but instead attempted to present "a selection made at the personal whim of the author."

Transducer theory and design, as well as absorption and dispersion of ultrasound, are the topics that receive more than honorable mention. No radical departures from the usual presentation are evident; that is, equivalent circuits are used to discuss transducers, and relaxation processes are cited to explain some absorption and dispersion phenomena. The book also contains straightforward, basic discussion of wave motion and radiation. Some space is devoted to measurement

techniques and various applications. Simplifications can be found throughout the book, for example, ". . . we shall use the term piezoelectricity to describe the properties of both truly piezoelectric and ferroelectric materials."

Recent developments are briefly mentioned. Sonar is dealt with in 21 lines, delay lines are described on one page and epitaxial transducers are discussed in seven lines. Unfortunately, this brevity is coupled with an effort to limit references. There are few; of these about three or four list publications that are more than ten years old.

In general, the book presents in an elementary manner a selection of basic topics and is aimed at the reader who wants to acquire a nodding acquaint-ance with ultrasonics.

WALTER G. MAYER Associate Professor of Physics Georgetown University

Modern Quantum Mechanics With Applications to Elementary Particle Physics: An Introduction To Contemporary Physical Thinking

By J. A. Eisele 541 pp. Interscience, New York, 1969. \$19.95

This is an unusual book. In the preface, John A. Eisele explains that the text is based on a course in quantum electrodynamics and elementary-particle physics, intended for "hardworking graduate students," and should be of interest to "PhD's and professors." Eisele has striven to accomplish this "by filling in the steps in which 'it can be shown' or 'it is well known that' usually appears."

In some instances Eisele fills in the mathematical steps with more detail than would be necessary for a bright student of high-school algebra. For example, at least 50 pages are essentially devoted to examples of multiplication of two-by-two or four-by-four matrices. There are several representations for the Dirac y matrices, and Eisele goes through many of the same derivations two or three times, each time using a different representation and each time filling in all the steps. He does not always live up to his promise to include all the details, for he gives many results with either sketchy proofs or none at all. This is, in fact, a redeeming feature of the work, because otherwise the book would have had to be ten thousand pages long, in order to cover the material.

Eisele includes such varied subjects as special relativity, Maxwell's equations, the old Bohr theory, the nonrelativistic Schrödinger equation, the Dirac equation, Feynman diagrams and beta decay. These diverse topics are treated unconventionally. For example, in discussing the Bohr atom, he invokes the virial theorem to conclude that the total energy is half the potential energy, when this result is easily obtained directly.

Early in the book (page 67) Eisele introduces the Schrödinger equation with the single phrase, "The Schrödinger equation in one-dimension is ... The wave function ψ is not defined, and no discussion is given of the meaning of the equation. I have no argument with this; after all, the reader is supposed to be familiar with nonrelativistic quantum mechanics. But after seeing \u03c8 appear hundreds of times in the Schrödinger, Dirac, and Klein-Gordon equations, I read the explanation (page 390): "In quantum mechanics every system is represented by a mathematical function called a wave function or eigenfunction."

The author's treatment of elementary particles is not the usual one. He lists four basic properties that an elementary particle can "reasonably" be expected to have: (1) a "sharply defined, or quantized" mass, (2) a lifetime sufficiently long to "exist and/or be observed," (3) a charge equal in magnitude to that of the electron or zero, and (4) a spin of 0, 1/2, 1, or 2 in units of \$\hat{h}\$, others having "not yet been observed."

Eisele neglects to point out that properties (1) and (2) are related by the uncertainty principle: if a particle has a completely sharp mass, it must be stable. In excluding particles of short lifetime, Eisele rejects the usually accepted principle that puts all members of a given isotopic-spin or SU(3) multiplet on the same footing. His list of elementary particles includes only those that are stable or decay by weak interactions. For example, he includes the charged pion, but not the neutral one. But if relative stability is to be the criterion, the Ω - should be included, since it decays weakly. (Incidentally, the Ω^- is believed to have spin 3/2.)

In addition to electrons and photons, Eisele treats two subjects in elementary-particle physics at some length: beta decay and isotopic spin. The sections on beta decay are concerned with the classical topics, such as selection rules in allowed and forbidden decays, and with nonconservation of parity. Essentially nothing is said about the weak decays of strange particles.

The section on isotopic spin is largely devoted to whether the nucleon has isotopic spin 1/2, 1, or 3/2. Eisele considers the evidence from pion-nucleon scattering, and, using oversimplified arguments, concludes that the nucleon must have isotopic spin 1/2. But sure-

rival and thods of Ci waner, ed. pp. Indiana 1969. \$7.50

which tri

al vet does

the canno

level of pre-

The

preparatio

is importa mical surv ue remarks - to this se Hense T Lant been - book that what one Bense prepi E page of p and the pro = preparatio al atmosphe withood of y or omitted agy This Hense is an with but the -) explored

to or act
and he does
the USSR to
the USSR to
the betwee
the a mass
The po
the come into
the these
the search with

By that t

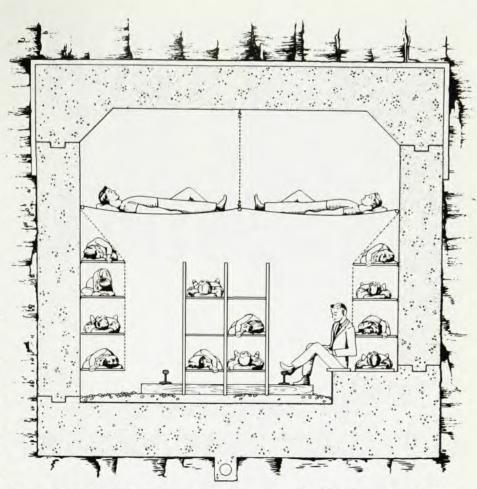
after these
mussed wif
n'All conflimoe the te
World War'
move of th
of its p

endence of
EUS is co
EUSSR as
Oper does
the US 1
Into a rr
Process t

nding, ar

ly, the straightforward procedure would be to note that the multiplicity N is related to the isotopic spin T by N=2T+1. Because the nucleon has a multiplicity of two (proton and neutron), it follows immediately that T=1/2. Eisele's treatment has the advantage that it enables him to illustrate the use of Clebsch-Gordan coefficients, a subject not mentioned earlier in the book, and considered "well known" when introduced.

Don B. LICHTENBERG Indiana University


Survival and the Bomb: Methods of Civil Defense

E. P. Wigner, ed. 307 pp. Indiana U. P., Bloomington, Ind., 1969. \$7.50

"A book which tries to present the facts squarely yet does not disregard problems which cannot be dealt with at the same level of precision as physical phenomena... The consequences of civil defense preparation appear to us to be almost as important as their effect on the physical survival of our people." These are remarks in Eugene Wigner's preface to this set of short essays on civil defense. They promise a book that has not been written.

The book that was written is instead a somewhat one-sided discussion of civil-defense preparations and their effects in case of war. The second dimension of the problem, effects of civildefense preparations on the social and political atmosphere of the US and on the likelihood of war, is dealt with too briefly or omitted in Wigner's introductory essay. This second dimension to civil defense is admittedly difficult to deal with, but the questions should be carefully explored. Wigner omits the possibility that the US could itself threaten to or actually start a nuclear war, and he does not discuss the reaction of the USSR to the changed strategic balance between the great powers caused by a massive US civil-defense program. The possibility that the US might become intransigent towards the USSR after these massive preparations is dismissed with cold-war rhetoric such as "All conflicts between East and West since the termination of the Second World War have been initiated by some move of the East toward an extension of its power" and again "The independence of the countries liberated by the US is complete-those 'liberated' by the USSR are still under tight rein."

Wigner does not consider the concern that the US may be gradually developing into a military state, destroying in the process the qualities of life worth defending and that, in particular, mas-

Subway tubes as mass shelters. This cross section of a 16-foot-square tube shows how four or even five persons per foot can be housed. (From Survival and the Bomb.)

sive civil-defense preparations could be an essential ingredient in this process. There has been a deep change in military and police institutions and in the attitudes of many Americans towards them since the 1930's. It is likely that the internal problems of giant bureaucracies, intrenched and growing, is the greatest threat to the future of either the US or USSR. The obvious examples of dangerous self perpetuating giant bureaucracies are the secret police in the USSR and the Defense Department and its closely associated industries in the US. (I am implying no comparison of the methods and purposes of these institutions.) The effects of a massive civil-defense program institutionally and on the daily lives of all of us must be considered in this light.

Enough of the vital questions that are not dealt with. This book is an espousal of a massive civil-defense program. It consists of essays selected and introduced by Wigner, with the key essay referred to above also written by him. The essays range from human behavior at the Siege of Budapest (Second World War) to improved shelters and accessories. The latter is the other key essay. It deals with very large, well designed shelters. There is no warning

that the home shelter, suggested without discussion for less populated areas, will likely be expensive and useless. There is a well presented summary of the "Effects of Nuclear Weapons" by Wallace Brode and John Newman.

There is also an essay on active defense with the arguments against the old Nike-Zeus antiballistic missile system. The article is vague about current antiballistic missile proposals. It contains a calculation claiming that the antiballistic missile is more expensive than civil defense for protection of people, except perhaps in the most densely populated areas. Ample arguments and general agreement about the ineffectiveness of antiballistic missiles in defense of cities is perhaps too recent to be included. It is assumed in this and some other essays that everyone will have 15 minutes warning, and that they will be well trained or that shelters will be so ubiquitous that this amount of time will suffice to bring many into deep shelters.

An essay on morale contains the suggestion that "Many people when confronted by the appalling casualties may react so emotionally that they are unable to perform their assignments. Some special form of preparation . . . is necessary . . . but a good deal of re-