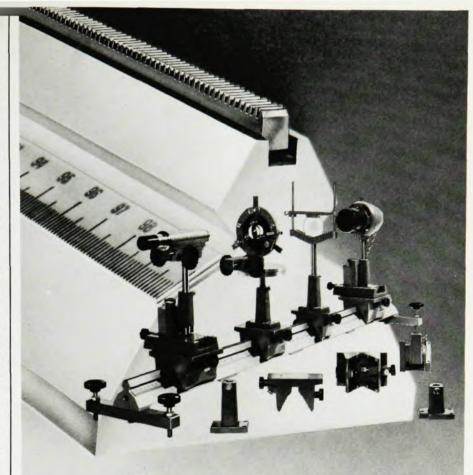
ber and an ionization spectrometer. whose dimensions are about 2 × 1 × 5 meters. Energy loss in the scintillators is measured by an array of phototubes. Whenever the total energy loss exceeds a certain threshold, a picture is taken of the event by stereoscopic cameras that view the scintillators through two perpendicular image intensifiers.


Electromagnetic showers from neutral pion decay gamma rays are initiated in the emulsion chamber and then fully develop in the ionization spectrometer below as the observed cascades. From pictures and phototube signals the direction and energy of each of several simultaneous cascades may be determined.

The emulsions, spectrometer and intensifier will measure not only the number of interactions but also the energy spectrum and multiplicity of pions, one of the principal products of such high-energy reactions.

Huggett and collaborators at the Max Planck Institute in Munich have used a similar apparatus that is, however, much smaller and does not have image intensifiers, in a balloon experiment to measure the cosmic-ray proton spectrum. They find the primary cosmic-ray protons between 40 and 400 GeV have the same intensity as the latest result from the Soviet Proton III satellite. Huggett and his Munich colleagues are now designing a spectrometer to put on a satellite.

NSF Extends Deep-Sea Drilling Project for Another 3 Years

The National Science Foundation has tripled the life of the Deep Sea Drilling Project by adding 36 months and \$22 million to the original plan. So far, the specially designed ship has been able to bore up to 1000 meters into the ocean bottom at 66 sites in water depths up to 6000 meters. The extension provides for 15 more twomonth cruises in the Atlantic, Pacific and Indian Oceans and the Mediterranean Sea. Drilling on the first seven legs of the initial contract have produced some evidence that continental drift is still taking place, that the ocean basins are relatively young features of the earth, that the Northwest Pacific is much older than any part of the Atlantic, and that there may be large petroleum deposits under the Gulf of Mexico.

TRI-RACK Ealing Makes It

The Ealing Tri-Rack. The first triangular bench to offer a rack and pinion system for driving individual or groups of carriers along the bench axis. And at about the same price as our standard triangular benches.

The rack is recessed into a channel that runs the length of the bench and engages a pinion built into the carrier base. By turning the pinion control knob, the carrier is moved smoothly along the bench. The rack is also free to slide in the channel, such that a locked carrier can drive any single or group of carriers remotely.

The carriers are of the same modular design recently introduced for the Ealing Lathe Bed Benches. In fact, many of the components are interchangeable. Carrier bases are available in three widths; all accept the standard 13.7mm diameter pin mounted accessories.

For a free brochure giving full particulars of this new concept in triangular benches, write or call: The Ealing Corporation, Optics Division; 2225S Massachusetts Avenue; Cambridge, Massachusetts 02140. Tel: (617) 491-5870. In California, Tel: (213) 357-3330.

England: 15S Greycaine Road, Bushy Mill Lane, Watford, Herts (WAtford 42261). Canada: 719S Lajoie Avenue, Dorval 760, Province of Quebec: (514) 631-5171.