SLAC Inelastic Data Challenges Theorists

Since the preliminary reports on deep inelastic electron–proton scattering were made by SLAC experimenters in mid-1968, waves of theoretical speculation have been spreading over the high-energy physics community. Now some of the results have finally been published by the MIT–SLAC collaboration, 1,2 but it is too soon to say they have been adequately explained by any theory.

With the 20-GeV electron beam from the SLAC machine, one has a new kinematic region for probing the electromagnetic structure and interactions of the proton. The SLAC-MIT group measured inelastic electronproton scattering by detecting electrons scattered from a liquid-hydrogen target. They varied incident energies from E = 7 to 17 GeV and report data for scattering angles of $\theta = 6$ and 10 deg. At the International Conference on Electron and Photon Interactions, held in Daresbury, Richard Taylor of SLAC reported preliminary results on 18, 26 and 34 deg. The experimenters measured scattering with large electron-energy loss v = E - E' (where E' is final electron energy) and high fourmomentum transfer squared, q^2 , where $q^2 = 2EE' (1 - \cos \theta).$

Before the SLAC inelastic measurements, some physicists expected that the inelastic cross sections would fall off rapidly with q^2 , just as elastic electron-proton scattering had done. Such a rapid decline in the elastic cross section with increasing q^2 suggested that the proton had no hard core, but a rather diffuse structure in which charge distributions were spread out in space. Many felt that one could expect the same kind of scattering from a diffuse charge distribution no matter what process you looked at. However, other observers had speculated that the total electron-proton scattering might not fall off very rapidly; so if elastic did fall rapidly, inelastic would not.

The SLAC experimenters find that inelastic cross sections do decrease very rapidly (as expected) with increasing q^2 as long as one excites nucleon resonances. But beyond a final-state energy of about 2 GeV, cross sections show only a weak dependence on mo-

mentum transfer, decreasing slowly with increasing q^2 . For higher final-state energies the decline of cross section with q^2 becomes slower and slower.

Many observers believe that the data show the scaling behavior suggested on general arguments by J. D. Bjorken (SLAC),³ even before the data were analyzed. Although the double differential cross section usually is expressed as the product of the Mott differential cross section times $W_2 + 2W_1 \tan^2\theta/2$ where W_2 and W_1 are functions of v and q^2 , Bjorken had suggested that W_2 could have the form (1/v) F (ω) where $\omega = 2Mv/q^2$. F (ω) would be valid for large values of v and q^2 and would show scale invariance, that is, it would depend only on the ratio v/q^2 .

The large-angle data presented by Taylor at Daresbury provided a rough separation of W_1 and W_2 . Taylor said these results indicated that the transverse part of the inelastic scattering is dominant and indicated that 6- and 10-deg results are consistent with the scaling hypothesis (within the measurement error—about 10%).

Many different models have been proposed to explain the SLAC results. Richard P. Feynman of Cal Tech and others have suggested a "parton" model, in which the electron scatters incoherently from many pointlike constituents inside the proton. They argue that such pointlike behavior implies scaling.

Partons, like quarks, do not seem to be in immediate agreement with the picture of hadrons in which one visualizes the hadron as a cloud of other virtual strongly interacting particles; this cloud extends over a large region, about a fermi in size; all known stable hadrons appear to have this fundamental dimension. However, Sidney Drell and his collaborators (SLAC)⁴ have derived a parton model from conventional field theory.

A number of attempts have been made to use Regge exchange ideas in interpretation of the SLAC data, for example, that by H. D. Abarbanel, M. L. Goldberger and Sam B. Treiman (Princeton).⁵

Diffraction models have been successful in explaining elastic data. An extension of the diffraction picture to inelastic processes is the hypothesis of limiting fragmentation made by C. N. Yang and his collaborators at Stony Brook;6 in this picture one thinks of two hadrons colliding with each other as two semitransparent objects that go through each other, causing excitations that later decay into fragments; the momentum distribution and the number of fragments produced approach a limit for infinitely high-energy collisions. (In describing it, Yang asked: "Did I make myself semiclear?") An electron-hadron scattering is a special case; the electron does not fragment.

The vector-dominance model emphasizes the structure of the virtual photon, which turns into a vector meson, such as a rho. One such model was proposed by J. J. Sakurai (University of Chicago).⁷

An interesting but difficult experiment to try now is detection of the kinds of strongly interacting particles emitted by the target; the present experiment only detected outgoing electrons.

—GBL

References

- E. D. Bloom, D. H. Coward, H. De-Staebler, J. Drees, G. Miller, L. W. Mo, R. E. Taylor, M. Breidenbach, J. I. Friedman, G. C. Hartmann, H. W. Kendall, Phys. Rev. Lett. 23, 930 (1969).
- M. Breidenbach, J. I. Friedman, H. W. Kendall, E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, L. W. Mo, R. E. Taylor, Phys. Rev. Lett. 23, 935 (1969).
- J. D. Bjorken, Phys. Rev. 179, 1547 (1969).
- 4. S. J. Drell, D. J. Levy, T. M. Yan, Phys. Rev., to be published.
- H. D. I. Abarbanel, M. L. Goldberger, S. B. Treiman, Phys. Rev. Lett, 22, 500 (1969).
- M. Benecke, T. T. Chow, C. N. Yang, E. Yen, Phys. Rev., to be published.
- J. J. Sakurai, Phys. Rev. Lett, 22, 981 (1969).

Bubble Chambers Are Ready to Study Neutrinos

Two large new bubble chambers were successfully tested this October and are expected to begin recording neutrinonucleon interactions early this year.