tain a fair amount of detail and to give a picture of what can be accomplished.

It is interesting that there is probably relatively little overlap in the audiences for these three articles. This fact was true of the former volumes that are about evenly split between topics of interest in nuclear physics and those primarily for high-energy experiments. Nevertheless the series represents a worthwhile contribution to the technical literature.

Robert R. Borchers is presently doing research in gamma-ray perturbed angular correlation and digital data-handling techniques at the University of Wisconsin, Madison.

Bell's quanta

tion of m

of fire

ISTONE.

space for

ION the prod

S CONTR

ient of sp

lete trat

ulk-effect

iplete 12

THE PHYSICS OF LARGE DEFORMATION OF CRYSTALLINE SOLIDS, VOL. 14. By James F. Bell. 253 pp. Springer-Verlag, New York, 1968. \$12.00

by DANIEL C. MATTIS

This monograph suggests an amusing and potentially unique intersection of solid-state physics and mechanical engineering. Over a span of 20 years of research, James F. Bell, professor at Johns Hopkins' solid mechanics department, has performed thousands of experiments on dozens of varied crystalline solids ranging from rock salt to aluminum. The tests, some static and some involving the motion of largeamplitude waves in the material, had durations as short as 10-6 sec at strain rates of 105 sec-1 and as long as 106 sec at strain rates of 10-8 sec.-1 They were conducted at temperatures as low as 4.2 K and as high as 1800 K, that is from $T/T_{\rm m} =$ 0.003 to 0.98, where $T_{\rm m}$ is the melting temperature of the material. From these experiments, which are the substance of this monograph, Bell derives the phenomenological law

$$\sigma = \left(\frac{2}{3}\right)^{r/2} \mu(0) B_0 \left(1 - \frac{T}{T_{\rm m}}\right) (\epsilon - \epsilon_{\rm b})^{1/2}$$

where σ is the uniaxial stress and ϵ the uniaxial strain. They are referred to an initial unstressed value ϵ_b . B_0 is a constant, $\mu(0)$ is isotropic modulus, and $r=1,2,3,\ldots$ is a positive integer that increases by steps of unity or more, with increasing stress. Typical

experimental results are shown in the figure. Not content with quantizing r, Bell has also found that $\mu(0)$ is quantized

$$\mu(0) = \left(\frac{2}{3}\right)^{s/2+p/4} \times 2.89$$

 $\times 10^4 \text{kg/mm}^2$

This is a universal relation for crystalline materials, in which s = 1,2,3,...is also an arbitrary positive integer and p = 0,1 is a structure factor that is constant for a given material.

Does the fraction 2/3 arise from an average, say of $\cos^2\theta$, over various orientations of microcrystalline structures? Do the "quantum numbers" r, s and p relate to the number of such microstructures? Answers based on a microscopic model are presently not available, and there are no guesses ventured in this book. The technological importance of understanding large-scale deformation of matter is obvious, and so the challenge of this book to physicists is loud and clear.

The reviewer is professor of solid-state physics at the Belfer Graduate School of Science of Yeshiva University, and has most recently coauthored an article "Magnetic Semiconductors," in the Handbuch der Physik.

Compound semiconductors

MONOGRAPHS IN SEMICONDUCTOR PHYSICS, VOL. 2: LIQUID SEMICONDUCTORS. (Trans. from Russian) By V. M. Glazov, S. N. Chizhevskaya, N. N. Glagoleva. 362 pp. Plenum, New York, 1969. \$22.50

by STUART A. RICE

Although the translation from the Russian is undoubtedly correct, the title of this book is misleading. To me the interesting problems in liquid semiconductors are primarily concerned with the electronic structure, the scattering processes that occur in liquids and the relation between the optical spectra of liquids and solids.

This book, on the other hand, describes thermodynamic and gross physical properties of semiconductors. It is, in fact, an extended review of the authors' work and of similar work by other investigators. The dc conductivities, the thermoelectric powers, the magnetic susceptibilities and oc-

SUPERCONDUCTING

SUPERCONDUCTING MAGNETS

SUPERCONDUCTING Magnet Systems

For Technical Information or Employment, Call or Write:

MAGNETIC CORPORATION of AMERICA

67 ROGERS STREET CAMBRIDGE, MA. 02142 (617) 868-3300

An Equal Opportunity Employer